版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川樂(lè)山市中區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.素?cái)?shù)指整數(shù)在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果。哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如。在不超過(guò)15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和小于18的概率是()A. B. C. D.2.已知,,則()A. B. C. D.3.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,則()A. B. C. D.4.在三棱錐中,面,則三棱錐的外接球表面積是()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.216.若,,與的夾角為,則的值是()A. B. C. D.7.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.其中正確的命題是()A.①② B.②③ C.③④ D.④8.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函數(shù)g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.99.已知是定義在上的奇函數(shù),且滿足,當(dāng)時(shí),,則等于()A.-1 B. C. D.110.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入的值為24,則輸出的值為()A.0 B.1 C.2 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.若,方程的解為_(kāi)_____.12.已知是以為首項(xiàng),為公差的等差數(shù)列,是其前項(xiàng)和,則數(shù)列的最小項(xiàng)為第___項(xiàng)13.已知關(guān)于實(shí)數(shù)x,y的不等式組構(gòu)成的平面區(qū)域?yàn)?,若,使得恒成立,則實(shí)數(shù)m的最小值是______.14.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________.15.已知函數(shù)f(x)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是____________.16.若在區(qū)間(且)上至少含有30個(gè)零點(diǎn),則的最小值為_(kāi)____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量.(1)若向量,且,求的坐標(biāo);(2)若向量與互相垂直,求實(shí)數(shù)的值.18.已知函數(shù),,值域?yàn)?,求常?shù)、的值;19.已知函數(shù).(I)當(dāng)時(shí),求不等式的解集;(II)若關(guān)于的不等式有且僅有一個(gè)整數(shù)解,求正實(shí)數(shù)的取值范圍.20.已知函數(shù)的圖象過(guò)點(diǎn),,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求實(shí)數(shù)的取值范圍.21.如圖所示,是一個(gè)矩形花壇,其中米,米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求:在上,在上,對(duì)角線過(guò)點(diǎn),且矩形的面積小于150平方米.(1)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當(dāng)?shù)拈L(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
找出不超過(guò)15的素?cái)?shù),從其中任取2個(gè)共有多少種取法,找到取出的兩個(gè)和小于18的個(gè)數(shù),根據(jù)古典概型求解即可.【詳解】不超過(guò)15的素?cái)?shù)為,共6個(gè),任取2個(gè)分別為,,,,,,,,,,,,,,,共15個(gè)基本事件,其中兩個(gè)和小于18的共有11個(gè)基本事件,根據(jù)古典概型概率公式知.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于中檔題.2、C【解析】
由放縮法可得出,再利用特殊值法以及不等式的基本性質(zhì)可判斷各選項(xiàng)中不等式的正誤.【詳解】,,可得.取,,,則A、D選項(xiàng)中的不等式不成立;取,,,則B選項(xiàng)中的不等式不成立;且,由不等式的基本性質(zhì)得,C選項(xiàng)中的不等式成立.故選:C.【點(diǎn)睛】本題考查不等式正誤的判斷,一般利用不等式的性質(zhì)或特殊值法進(jìn)行判斷,考查推理能力,屬于中等題.3、B【解析】
由題意和余弦定理可得,再由余弦定理可得,可得角的值.【詳解】在中,,由余弦定理可得,,,又,.故選:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查了轉(zhuǎn)化思想,屬基礎(chǔ)題.4、D【解析】
首先計(jì)算BD長(zhǎng)為2,判斷三角形BCD為直角三角形,將三棱錐還原為長(zhǎng)方體,根據(jù)體對(duì)角線等于直徑,計(jì)算得到答案.【詳解】三棱錐中,面中:在中:即ABCD四點(diǎn)都在對(duì)應(yīng)長(zhǎng)方體上:體對(duì)角線為AD答案選D【點(diǎn)睛】本題考查了三棱錐的外接球表面積,將三棱錐放在對(duì)應(yīng)的長(zhǎng)方體里面是解題的關(guān)鍵.5、C【解析】
通過(guò)程序一步步分析得到結(jié)果,從而得到輸出結(jié)果.【詳解】開(kāi)始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點(diǎn)睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學(xué)生的分析能力及計(jì)算能力,難度不大.6、C【解析】
由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.7、D【解析】
利用平面與平面垂直和平行的判定和性質(zhì),直線與平面平行的判斷,對(duì)選項(xiàng)逐一判斷即可.【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯(cuò)誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯(cuò)誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯(cuò)誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題.故選D.【點(diǎn)睛】本題考查平面與平面的位置關(guān)系,直線與平面的位置關(guān)系,考查空間想象力,屬于中檔題.8、B【解析】
根據(jù)變換T(m,n)可生成函數(shù)g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【詳解】由題意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因?yàn)閥=1x+x-2在x∈[2,10]上單調(diào)遞減且為正值,y=10-x在x∈[2,10]上單調(diào)遞減且為正值,所以g(x)=10-x(【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最大值,涉及創(chuàng)設(shè)新情景及函數(shù)式的變形,屬于難題9、C【解析】
根據(jù)求得函數(shù)的周期,再結(jié)合奇偶性求得所求表達(dá)式的值.【詳解】由于故函數(shù)是周期為的周期函數(shù),故,故選C.【點(diǎn)睛】本小題主要考查函數(shù)的周期性,考查函數(shù)的奇偶性,考查函數(shù)值的求法,屬于基礎(chǔ)題.10、C【解析】
根據(jù)給定的程序框圖,逐次循環(huán)計(jì)算,即可求解,得到答案.【詳解】由題意,第一循環(huán):,能被3整除,不成立,第二循環(huán):,不能被3整除,不成立,第三循環(huán):,不能被3整除,成立,終止循環(huán),輸出,故選C.【點(diǎn)睛】本題主要考查了程序框圖的識(shí)別與應(yīng)用,其中解答中根據(jù)條件進(jìn)行模擬循環(huán)計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
運(yùn)用指數(shù)方程的解法,結(jié)合指數(shù)函數(shù)的值域,可得所求解.【詳解】由,即,因,解得,即.故答案:.【點(diǎn)睛】本題考查指數(shù)方程的解法,以及指數(shù)函數(shù)的值域,考查運(yùn)算能力,屬于基礎(chǔ)題.12、【解析】
先求,利用二次函數(shù)性質(zhì)求最值即可【詳解】由題當(dāng)時(shí)最小故答案為8【點(diǎn)睛】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎(chǔ)題13、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,由圖像易知,點(diǎn)到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來(lái)求解,屬于??碱}型.14、【解析】
先利用輔助角公式將函數(shù)的解析式化簡(jiǎn),根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計(jì)算出的值.【詳解】,由題意可得,因此,,故答案為.【點(diǎn)睛】本題考查輔助角公式化簡(jiǎn)、三角函數(shù)圖象變換,在三角圖象相位變換的問(wèn)題中,首先應(yīng)該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進(jìn)行加減,考查計(jì)算能力,屬于中等題.15、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函數(shù)求出定點(diǎn)的縱坐標(biāo)得解.【詳解】令x-1=1,得到x=2,把x=2代入函數(shù)得,所以定點(diǎn)P的坐標(biāo)為(2,4).故答案為:(2,4)【點(diǎn)睛】本題主要考查對(duì)數(shù)函數(shù)的定點(diǎn)問(wèn)題,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
首先求出在上的兩個(gè)零點(diǎn),再根據(jù)周期性算出至少含有30個(gè)零點(diǎn)時(shí)的值即可【詳解】根據(jù),即,故,或,∵在區(qū)間(且)上至少含有30個(gè)零點(diǎn),∴不妨假設(shè)(此時(shí),),則此時(shí)的最小值為,(此時(shí),),∴的最小值為,故答案為:【點(diǎn)睛】本題函數(shù)零點(diǎn)個(gè)數(shù)的判斷,解決此類(lèi)問(wèn)題通常結(jié)合周期、函數(shù)圖形進(jìn)行解決。屬于難題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或(2)【解析】
(1)因?yàn)?,所以可以設(shè)求出坐標(biāo),根據(jù)模長(zhǎng),可以得到參數(shù)的方程.(2)由于已知條件可以計(jì)算出與坐標(biāo)(含有參數(shù))而兩向量垂直,可以得到關(guān)于的方程,完成本題.【詳解】(1)法一:設(shè),則,所以解得所以或法二:設(shè),因?yàn)椋?,所以,因?yàn)?,所以解得或,所以或?)因?yàn)橄蛄颗c互相垂直所以,即而,,所以,因此,解得【點(diǎn)睛】考查了向量的線性表示,引入?yún)?shù),只要我們能建立起引入?yún)?shù)的方程,則就能計(jì)算出所求參數(shù)值,從而完成本題.18、,;或,;【解析】
先利用輔助角公式化簡(jiǎn),再根據(jù),值域?yàn)榍蠼饧纯?【詳解】.又則,當(dāng)時(shí),,此時(shí)當(dāng)時(shí),,此時(shí)故,;或,;【點(diǎn)睛】本題主要考查了三角函數(shù)的輔助角公式以及三角函數(shù)值域的問(wèn)題,需要根據(jù)自變量的范圍求出值域,同時(shí)注意正弦函數(shù)部分的系數(shù)正負(fù),屬于中等題型.19、(I);(II),或【解析】
(I)直接解不等式得解集;(II)對(duì)a分類(lèi)討論解不等式分析找到a滿足的不等式,解不等式即得解.【詳解】(I)當(dāng)時(shí),不等式為,不等式的解集為,所以不等式的解集為;(II)原不等式可化為,①當(dāng),即時(shí),原不等式的解集為,不滿足題意;②當(dāng),即時(shí),,此時(shí),所以;③當(dāng),即時(shí),,所以只需,解得;綜上所述,,或.【點(diǎn)睛】本題主要考查一元二次不等式的解法和解集,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.20、(1);(2);(3)【解析】
(1)根據(jù),,兩點(diǎn)可確定,的值;(2)由(1)知,,求出,的值,然后根據(jù),求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【詳解】(1)由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度廁所環(huán)保材料生產(chǎn)與銷(xiāo)售合同2篇
- 2025年度輪胎行業(yè)新能源汽車(chē)配套服務(wù)合同4篇
- 2025年度海洋工程裝備采購(gòu)及租賃服務(wù)合同2篇
- 2025年度教育培訓(xùn)機(jī)構(gòu)場(chǎng)地租賃及課程研發(fā)服務(wù)合同3篇
- 2024物業(yè)公司環(huán)保措施合同
- 2025年度林地林木資源調(diào)查與監(jiān)測(cè)合同3篇
- 二零二五年房地產(chǎn)面積測(cè)繪與銷(xiāo)售備案合同范本3篇
- 2025年度二零二五年度奇幻馬戲團(tuán)國(guó)際巡演合作合同4篇
- 2025年度餐飲廚師個(gè)人技能保密及競(jìng)業(yè)限制合同3篇
- 二零二五版船舶建造質(zhì)量檢測(cè)與驗(yàn)收合同3篇
- 拆遷評(píng)估機(jī)構(gòu)選定方案
- 床旁超聲監(jiān)測(cè)胃殘余量
- 上海市松江區(qū)市級(jí)名校2025屆數(shù)學(xué)高一上期末達(dá)標(biāo)檢測(cè)試題含解析
- 綜合實(shí)踐活動(dòng)教案三上
- 《新能源汽車(chē)電氣設(shè)備構(gòu)造與維修》項(xiàng)目三 新能源汽車(chē)照明與信號(hào)系統(tǒng)檢修
- 2024年新課標(biāo)《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》測(cè)試題(附含答案)
- 醫(yī)院培訓(xùn)課件:《靜脈中等長(zhǎng)度導(dǎo)管臨床應(yīng)用專(zhuān)家共識(shí)》
- 趣味知識(shí)問(wèn)答100道
- 中國(guó)國(guó)際大學(xué)生創(chuàng)新大賽與“挑戰(zhàn)杯”大學(xué)生創(chuàng)業(yè)計(jì)劃競(jìng)賽(第十一章)大學(xué)生創(chuàng)新創(chuàng)業(yè)教程
- 鋼管豎向承載力表
- 2024年新北師大版八年級(jí)上冊(cè)物理全冊(cè)教學(xué)課件(新版教材)
評(píng)論
0/150
提交評(píng)論