2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆天津市濱海新區(qū)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,,點P是內(nèi)(包括邊界)的一動點,且(),則的最大值為()A.6 B. C. D.62.若偶函數(shù)在上是增函數(shù),則()A. B.C. D.不能確定3.在中,為的三等分點,則()A. B. C. D.4.下列函數(shù)中,圖象的一部分如圖所示的是()A. B.C. D.5.若等差數(shù)列的前10項之和大于其前21項之和,則的值()A.大于0 B.等于0 C.小于0 D.不能確定6.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.7.方程的解集為()A.B.C.D.8.若,均為銳角,且,,則等于()A. B. C. D.9.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.10.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為.12.方程的解集是______.13._______________。14.?dāng)?shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________15.若點,關(guān)于直線l對稱,那么直線l的方程為________.16.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.18.某運動愛好者對自己的步行運動距離(單位:千米)和步行運動時間(單位:分鐘)進行統(tǒng)計,得到如下的統(tǒng)計資料:如果與存在線性相關(guān)關(guān)系,(1)求線性回歸方程(精確到0.01);(2)將分鐘的時間數(shù)據(jù)稱為有效運動數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取3個,求抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率.參考數(shù)據(jù):,參考公式:,.19.已知數(shù)列的前項和為,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)令,若對恒成立,求的取值范圍.20.已知,,求證:(1);(2).21.已知函數(shù)f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點軌跡為線段,由此可確定,利用勾股定理可求得結(jié)果.【詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點軌跡為線段當(dāng)與重合時,最大,即故選:【點睛】本題考查向量模長最值的求解問題,涉及到余弦定理解三角形的應(yīng)用;解題關(guān)鍵是能夠根據(jù)平面向量線性運算確定動點軌跡,根據(jù)軌跡確定最值點.2、B【解析】

根據(jù)偶函數(shù)性質(zhì)與冪函數(shù)性質(zhì)可得.【詳解】偶函數(shù)在上是增函數(shù),則它在上是減函數(shù),所以.故選:B.【點睛】本題考查冪函數(shù)的性質(zhì),考查偶函數(shù)性質(zhì),屬于基礎(chǔ)題.3、B【解析】試題分析:因為,所以,以點為坐標(biāo)原點,分別為軸建立直角坐標(biāo)系,設(shè),又為的三等分點所以,,所以,故選B.考點:平面向量的數(shù)量積.【一題多解】若,則,即有,為邊的三等分點,則,故選B.4、D【解析】

設(shè)圖中對應(yīng)三角函數(shù)最小正周期為T,從圖象看出,T=,所以函數(shù)的最小正周期為π,函數(shù)應(yīng)為y=向左平移了個單位,即=,選D.5、C【解析】

根據(jù)條件得到不等式,化簡后可判斷的情況.【詳解】據(jù)題意:,則,所以,即,則:,故選C.【點睛】本題考查等差數(shù)列前項和的應(yīng)用,難度較易.等差數(shù)列前項和之間的關(guān)系可以轉(zhuǎn)化為與的關(guān)系.6、B【解析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因為,所以選B.點睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標(biāo)公式;三是利用數(shù)量積的幾何意義.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.7、C【解析】

利用反三角函數(shù)的定義以及正切函數(shù)的周期為,即可得到原方程的解.【詳解】由,根據(jù)正切函數(shù)圖像以及周期可知:,故選:C【點睛】本題考查了反三角函數(shù)的定義以及正切函數(shù)的性質(zhì),需熟記正切函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.8、B【解析】

先利用兩角和的余弦公式求出,通過條件可求得,進而可得.【詳解】解:,因為,則,故,故選:B.【點睛】本題考查兩角和的正切公式,注意角的范圍的確定,是基礎(chǔ)題.9、A【解析】

因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.10、A【解析】

已知第一個等式利用正弦定理化簡,再利用誘導(dǎo)公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:,所以函數(shù)的周期等于考點:1.二倍角降冪公式;2.三角函數(shù)的周期.12、或【解析】

根據(jù)三角函數(shù)的性質(zhì)求解即可【詳解】,如圖所示:則故答案為:或【點睛】本題考查由三角函數(shù)值求解對應(yīng)自變量取值范圍,結(jié)合圖形求解能夠避免錯解,屬于基礎(chǔ)題13、【解析】

本題首先可根據(jù)同角三角函數(shù)關(guān)系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導(dǎo)公式即可得出結(jié)果?!驹斀狻?,故答案為【點睛】本題考查根據(jù)三角函數(shù)相關(guān)公式進行化簡求值,考查到的公式有、、以及,考查化歸與轉(zhuǎn)化思想,是中檔題。14、【解析】

因為數(shù)列有極限,故考慮的情況.又?jǐn)?shù)列分兩組,故分組求和求極限即可.【詳解】因為,故,且,故,又,即.綜上有.故答案為:【點睛】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關(guān)系,屬于中等題型.15、【解析】

利用直線垂直求出對稱軸斜率,利用中點坐標(biāo)公式求出中點,再由點斜式可得結(jié)果.【詳解】求得,∵點,關(guān)于直線l對稱,∴直線l的斜率1,直線l過AB的中點,∴直線l的方程為,即.故答案為:.【點睛】本題主要考查直線垂直的性質(zhì),考查了直線點斜式方程的應(yīng)用,屬于基礎(chǔ)題.16、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計算問題的總長度以及事件的長度.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求,利用誘導(dǎo)公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關(guān)系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【點睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,誘導(dǎo)公式,二倍角公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.18、(1)(2)【解析】

(1)先計算所給數(shù)據(jù)距離、時間的平均值,,利用公式求,再利用回歸方程求.(2)由(1)計算的個數(shù),先求從6個中任取3個數(shù)據(jù)的總的取法,再計算抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的取法,利用古典概型概率計算公式可得所求.【詳解】解:(1)依題意得,所以又因為,故線性回歸方程為.(2)將的6個值,代入(1)中回歸方程可知,前3個小于30,后3個大于30,所以滿足分鐘的有效運動數(shù)據(jù)的共有3個,設(shè)3個有效運動數(shù)據(jù)為,另3個不是有效運動數(shù)據(jù)為,則從6個數(shù)據(jù)中任取3個共有20種情況(或一一列舉),其中,抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的有9種情況,即,,所以從這6個時間數(shù)據(jù)中任取3個,抽取的3個數(shù)據(jù)恰有兩個為有效運動數(shù)據(jù)的概率為.【點睛】本題考查線性回歸方程的建立,古典概型的概率,考查數(shù)據(jù)處理能力,運用知識解決實際問題的能力,屬于中檔題.19、(1)證明見解析,(2)【解析】

(1)當(dāng)時,結(jié)合可求得;當(dāng)且時,利用可整理得,可證得數(shù)列為等比數(shù)列;根據(jù)等比數(shù)列通項公式可求得結(jié)果;(2)根據(jù)等比數(shù)列求和公式求得,代入可得;分別在為奇數(shù)和為偶數(shù)兩種情況下根據(jù)恒成立,采用分離變量的方法得到的范圍,綜合可得結(jié)果.【詳解】(1)當(dāng)時,,又當(dāng)且時,數(shù)列是以為首項,為公比的等比數(shù)列(2)由(1)知:當(dāng)為奇數(shù)時,,即:恒成立當(dāng)為偶數(shù)時,,即:綜上所述,若對恒成立,則【點睛】本題考查等比數(shù)列知識的綜合應(yīng)用,涉及到利用與關(guān)系證明數(shù)列為等比數(shù)列、等比數(shù)列通項公式和求和公式的應(yīng)用、恒成立問題的求解;本題解題關(guān)鍵是能夠進行合理分類,分別在兩種情況下求解參數(shù)的范圍,最終取交集得到結(jié)果.20、(1)證明見詳解;(2)證明見詳解.【解析】

(1)利用不等式性質(zhì),得,再證,最后證明;(2)先證,再證明.【詳解】證明:(1)因為,所以,于是,即,由,得.(2)因為,所,又因為,所以,所以.【點睛】本題考查利用不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論