2023屆河南省鄭州市高新區(qū)一中數(shù)學(xué)高三上期末監(jiān)測模擬試題含解析_第1頁
2023屆河南省鄭州市高新區(qū)一中數(shù)學(xué)高三上期末監(jiān)測模擬試題含解析_第2頁
2023屆河南省鄭州市高新區(qū)一中數(shù)學(xué)高三上期末監(jiān)測模擬試題含解析_第3頁
2023屆河南省鄭州市高新區(qū)一中數(shù)學(xué)高三上期末監(jiān)測模擬試題含解析_第4頁
2023屆河南省鄭州市高新區(qū)一中數(shù)學(xué)高三上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i2.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.9603.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.4.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.5.若集合,,則()A. B. C. D.6.已知,則()A. B. C. D.7.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.8.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.9.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.10.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于11.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.12.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.在中,,是的角平分線,設(shè),則實數(shù)的取值范圍是__________.14.的展開式中常數(shù)項是___________.15.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.16.《九章算術(shù)》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_____人;所合買的物品價格為_______元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.18.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.19.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.20.(12分)已知是公比為的無窮等比數(shù)列,其前項和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?22.(10分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.2、B【解析】

先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應(yīng)用,在分類時,要注意不重不漏的原則,本題是一道中檔題.3、C【解析】

將復(fù)數(shù)化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.4、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.5、B【解析】

根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補集關(guān)系的應(yīng)用,屬于中檔題.6、B【解析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.7、A【解析】

根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對空間想象能力要求較高,屬于中檔題.8、D【解析】

根據(jù)空間向量的線性運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎(chǔ)題.9、B【解析】

由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復(fù)原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎(chǔ)題.10、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.11、B【解析】

由題意可將方程轉(zhuǎn)化為,令,,進而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因為,當時,,所以在,上單調(diào)遞增,且時,.當時,,在上單調(diào)遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.12、C【解析】

分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設(shè)乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設(shè)丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設(shè)丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設(shè)成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算能力,屬于中檔題.14、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.15、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價于函數(shù),即有兩個解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當時,易知不成立;當時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的轉(zhuǎn)化能力和計算能力,畫出圖像是解題的關(guān)鍵.16、753【解析】

根據(jù)物品價格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學(xué)文化及一元一次方程的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識.18、證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應(yīng)用,屬于基礎(chǔ)題.19、(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】

(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點存在性定理判斷出有唯一零點.(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得成立.【詳解】(1)∵函數(shù)的定義域為,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個零點:∵,所以函數(shù)在區(qū)間內(nèi)有零點,∵,函數(shù)在區(qū)間上沒有零點,故函數(shù)只有一個零點.(2)證明:函數(shù),則當時,,不符合題意;當時,令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個零點,即,所以,且,即兩邊取自然對數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20、見解析【解析】

選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關(guān)于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進而可得出結(jié)論.【詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數(shù)的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數(shù);選擇③:因為,所以,所以.令,即,整理得.當為偶數(shù)時,原不等式無解;當為奇數(shù)時,原不等式等價于,所以使得的正整數(shù)的最小值為.【點睛】本題考查了等比數(shù)列的通項公式求和公式,考查了推理能力與計算能力,屬于中檔題.21、(1);(2)當BP為cm時,α+β取得最小值.【解析】

(1)作AE⊥CD,垂足為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論