版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆廣西貴港市港南區(qū)中考數(shù)學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm22.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b4.計算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.65.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)6.老師隨機抽查了學生讀課外書冊數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.227.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發(fā),當乙車追上甲車時,兩車都停止行駛.設x(s)后兩車相距y(m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應表示為;④圖2中函數(shù)圖象與x軸交點的橫坐標為1.其中所有的正確結(jié)論是()A.①④ B.②③C.①②④ D.①③④8.下列實數(shù)中,有理數(shù)是()A. B. C.π D.9.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.10.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數(shù)為()A.100° B.110° C.120° D.130°二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:x2–4x+4=__________.12.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°13.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.14.等腰梯形是__________對稱圖形.15.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過A、B、C三點,且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________16.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.三、解答題(共8題,共72分)17.(8分)如圖,某次中俄“海上聯(lián)合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側(cè)得潛艇C的俯角為68°.試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度.(結(jié)果保留整數(shù).參考數(shù)據(jù):sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)18.(8分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個數(shù),用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)中,四個分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗證:設中間的數(shù)為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應用:設M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.19.(8分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.求袋子中白球的個數(shù);(請通過列式或列方程解答)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)20.(8分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.21.(8分)如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經(jīng)過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內(nèi)接格點三角形”.設對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內(nèi)接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1622.(10分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數(shù).23.(12分)分式化簡:(a-)÷24.在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側(cè)).(1)當拋物線過原點時,求實數(shù)a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數(shù)式表示);(3)當AB≤4時,求實數(shù)a的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
標注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應邊成比例求出,即,設BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.2、B【解析】
直接利用已知幾何體分別得出三視圖進而分析得出答案.【詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【點睛】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.3、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運用是解題的關(guān)鍵.4、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.5、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉(zhuǎn)的性質(zhì)得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉(zhuǎn),得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時,注意等邊三角形三線合一的性質(zhì).6、B【解析】
條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關(guān)系.用整個圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分數(shù).【詳解】課外書總?cè)藬?shù):6÷25%=24(人),看5冊的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【點睛】本題考查了統(tǒng)計圖與概率,熟練掌握條形統(tǒng)計圖與扇形統(tǒng)計圖是解題的關(guān)鍵.7、A【解析】分析:①根據(jù)圖象2得出結(jié)論;②根據(jù)(75,125)可知:75秒時,兩車的距離為125m,列方程可得結(jié)論;③根據(jù)圖1,線段的和與差可表示EF的長;④利用待定系數(shù)法求直線的解析式,令y=0可得結(jié)論.詳解:①y是兩車的距離,所以根據(jù)圖2可知:圖1中a的值為500,此選項正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項不正確;④設圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當y=0時,-5x+500=0,x=1,即圖2中函數(shù)圖象與x軸交點的橫坐標為1,此選項正確;其中所有的正確結(jié)論是①④;故選A.點睛:本題考查了一次函數(shù)的應用,根據(jù)函數(shù)圖象,讀懂題目信息,理解兩車間的距離與時間的關(guān)系是解題的關(guān)鍵.8、B【解析】
實數(shù)分為有理數(shù),無理數(shù),有理數(shù)有分數(shù)、整數(shù),無理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數(shù),故本選項錯誤,
B、無限循環(huán)小數(shù)為有理數(shù),符合;
C、為無理數(shù),故本選項錯誤;
D、不能正好開方,即為無理數(shù),故本選項錯誤;故選B.【點睛】本題考查的知識點是實數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實際出發(fā)有理數(shù)有分數(shù),自然數(shù)等,無理數(shù)有、根式下開不盡的從而得到了答案.9、C【解析】
先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.10、B【解析】
根據(jù)同弧所對的圓周角是圓心角度數(shù)的一半即可解題.【詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數(shù)的一半),故選B.【點睛】本題考查了圓周角和圓心角的關(guān)系,屬于簡單題,熟悉概念是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(x–1)1【解析】試題分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考點:分解因式.12、57°.【解析】
根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點睛】本題考查平行線的性質(zhì)及三角形外角的性質(zhì).13、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.14、軸【解析】
根據(jù)軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結(jié)合圖形,根據(jù)軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關(guān)于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.15、17【解析】過點B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點睛:本題考查了全等三角形的判定和性質(zhì)、勾股定理、平行線間的距離,三角形的面積公式,解題的關(guān)鍵是做輔助線,構(gòu)造全等三角形,通過證明三角形全等對應邊相等,再利用三角形的面積公式即可得解.16、(2,1)【解析】
由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案為:(2,1)【點睛】本題考查了矩形的性質(zhì),坐標與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.三、解答題(共8題,共72分)17、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數(shù)分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關(guān)系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據(jù)題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關(guān)鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關(guān)系求解.視頻18、(1)68
;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】
(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應用.當解得方程的解后,要觀察是否滿足題目和實際要求再進行取舍.19、(1)袋子中白球有2個;(2)見解析,.【解析】
(1)首先設袋子中白球有x個,利用概率公式求即可得方程:,解此方程即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【詳解】解:(1)設袋子中白球有x個,根據(jù)題意得:,解得:x=2,經(jīng)檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率.注意掌握方程思想的應用.注意概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2)1.【解析】
(1)根據(jù)相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據(jù)EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據(jù)S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質(zhì)的綜合應用,解題時注意:確定一個二次函數(shù)的最值,首先看自變量的取值范圍,當自變量取全體實數(shù)時,其最值為拋物線頂點坐標的縱坐標.21、C【解析】
根據(jù)在OB上的兩個交點之間的距離為3,可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數(shù),同理可得開口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開口向下,經(jīng)過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是:7+7=1.故選C.【點睛】本題是二次函數(shù)綜合題.主要考查了網(wǎng)格結(jié)構(gòu)的知識與二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變換,作出圖形更形象直觀.22、(1)答案見解析;(2)45°.【解析】
(1)分別以A、B為圓心,大于長為半徑畫弧,過兩弧的交點作直線即可;(2)根據(jù)∠DBF=∠ABD﹣∠ABF計算即可;【詳解】(1)如圖所示,直線EF即為所求;(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復習第九章第2講工業(yè)地域的形成與工業(yè)區(qū)教案含解析新人教版
- 2024高考化學二輪復習專題突破練4B元素及其化合物含解析
- 二零二五年度股東分紅紅利分配與投資計劃合同3篇
- 第二章復合材料增強體2017上課講義
- 小學食品安全管理制度
- 分階段分層次全過程質(zhì)量管控機制
- 單病種填報要求(更新至20240911)
- 2024年河北軟件職業(yè)技術(shù)學院高職單招語文歷年參考題庫含答案解析
- 2024年閘北區(qū)市北醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 二零二五年度離婚協(xié)議中個人隱私保護協(xié)議
- Q∕GDW 10721-2020 電力通信現(xiàn)場標準化作業(yè)規(guī)范
- 公安警察工作匯報PPT模板課件
- 第二講VSP地震勘探
- 干砌石護坡工程施工組織設計方案
- 直腸癌個案護理范文結(jié)腸癌個案護理.doc
- 污水處理中常用的專業(yè)術(shù)語
- 石英砂過濾器說明書
- 物業(yè)品質(zhì)提升ppt課件
- -烏兔太陽擇日法表
- 施工人員安全告知書
- 篩分系統(tǒng)設備安裝施工方案正文
評論
0/150
提交評論