2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省蘇州市姑蘇區(qū)中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.2.李老師在編寫下面這個(gè)題目的答案時(shí),不小心打亂了解答過(guò)程的順序,你能幫他調(diào)整過(guò)來(lái)嗎?證明步驟正確的順序是已知:如圖,在中,點(diǎn)D,E,F(xiàn)分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.3.下列計(jì)算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a64.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.5.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.6.|﹣3|的值是()A.3 B. C.﹣3 D.﹣7.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實(shí)數(shù))D.3b+2c>08.如圖,在矩形ABCD中,AB=,AD=2,以點(diǎn)A為圓心,AD的長(zhǎng)為半徑的圓交BC邊于點(diǎn)E,則圖中陰影部分的面積為()A. B. C. D.9.如圖,由兩個(gè)相同的正方體和一個(gè)圓錐體組成一個(gè)立體圖形,其俯視圖是A. B. C. D.10.哥哥與弟弟的年齡和是18歲,弟弟對(duì)哥哥說(shuō):“當(dāng)我的年齡是你現(xiàn)在年齡的時(shí)候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長(zhǎng)為__.12.如圖是一個(gè)立體圖形的三種視圖,則這個(gè)立體圖形的體積(結(jié)果保留π)為______________.13.函數(shù)的自變量x的取值范圍是_____.14.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長(zhǎng)線于點(diǎn)F,以AC上一點(diǎn)O為圓心OA為半徑的圓與BC相切于點(diǎn)M,交AD于點(diǎn)N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.15.分解因式:x2y﹣xy2=_____.16.某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是___歲.三、解答題(共8題,共72分)17.(8分)在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字1,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再?gòu)囊掖腥我饷鲆粋€(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).請(qǐng)你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);求點(diǎn)M(x,y)在函數(shù)y=﹣2x18.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.19.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過(guò)A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時(shí),求⊙O的面積.20.(8分)(1)計(jì)算:sin45°(2)解不等式組:21.(8分)圖1是一商場(chǎng)的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)22.(10分)如圖,AC是⊙O的直徑,點(diǎn)P在線段AC的延長(zhǎng)線上,且PC=CO,點(diǎn)B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動(dòng)點(diǎn),⊙O的半徑為5cm時(shí),當(dāng)弧CD長(zhǎng)為時(shí),四邊形ADPB為菱形,當(dāng)弧CD長(zhǎng)為時(shí),四邊形ADCB為矩形.23.(12分)已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.24.“母親節(jié)”前夕,某商店根據(jù)市場(chǎng)調(diào)查,用3000元購(gòu)進(jìn)第一批盒裝花,上市后很快售完,接著又用5000元購(gòu)進(jìn)第二批這種盒裝花.已知第二批所購(gòu)花的盒數(shù)是第一批所購(gòu)花盒數(shù)的2倍,且每盒花的進(jìn)價(jià)比第一批的進(jìn)價(jià)少5元.求第一批盒裝花每盒的進(jìn)價(jià)是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)題意畫出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長(zhǎng)為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點(diǎn)睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問(wèn)題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.2、B【解析】

根據(jù)平行線的性質(zhì)可得到兩組對(duì)應(yīng)角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì);關(guān)鍵是證明三角形相似.3、D【解析】

根據(jù)合并同類項(xiàng)法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯(cuò)誤;B、(ab)2=a2b2,故B錯(cuò)誤;C、a2與a3不是同類項(xiàng),不能合并,故C錯(cuò)誤;D、(a2)3=a6,故D正確,故選D.【點(diǎn)睛】本題考查冪的乘方與積的乘方,合并同類項(xiàng),熟練掌握各運(yùn)算的運(yùn)算性質(zhì)和運(yùn)算法則是解題的關(guān)鍵.4、D【解析】試題解析:設(shè)小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.5、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點(diǎn)在y軸的負(fù)半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過(guò)第一、三、四象限;故選:B.6、A【解析】分析:根據(jù)絕對(duì)值的定義回答即可.詳解:負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),故選A.點(diǎn)睛:考查絕對(duì)值,非負(fù)數(shù)的絕對(duì)值等于它本身,負(fù)數(shù)的絕對(duì)值等于它的相反數(shù).7、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項(xiàng)錯(cuò)誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項(xiàng)錯(cuò)誤;C.當(dāng)x=﹣1時(shí),y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項(xiàng)錯(cuò)誤;D.由圖象可知x=1,a+b+c>0①,∵對(duì)稱軸x=﹣1,當(dāng)x=1,y>0,∴當(dāng)x=﹣3時(shí),y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項(xiàng)正確;故選D.點(diǎn)睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會(huì)利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.8、B【解析】

先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進(jìn)行計(jì)算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點(diǎn)睛】本題考查了扇形面積的計(jì)算.陰影面積常用的方法:直接用公式法;和差法;割補(bǔ)法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.9、D【解析】

由圓錐的俯視圖可快速得出答案.【詳解】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中,從幾何體的上面看:可以得到兩個(gè)正方形,右邊的正方形里面有一個(gè)內(nèi)接圓.故選D.【點(diǎn)睛】本題考查立體圖形的三視圖,熟記基本立體圖的三視圖是解題的關(guān)鍵.10、D【解析】試題解析:設(shè)現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點(diǎn):由實(shí)際問(wèn)題抽象出二元一次方程組二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

試題分析:如圖,延長(zhǎng)CF交AB于點(diǎn)G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點(diǎn)D是BC中點(diǎn),∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.12、250【解析】

從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h(yuǎn)=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點(diǎn)睛】考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查;圓柱體積公式=底面積×高.13、x≠1【解析】

根據(jù)分母不等于2列式計(jì)算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:分式有意義,分母不為2.14、11π﹣.【解析】

陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點(diǎn)睛】考查不規(guī)則圖形的面積的計(jì)算,掌握扇形的面積公式是解題的關(guān)鍵.15、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).16、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個(gè)數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個(gè)班同學(xué)年齡的中位數(shù)是第20和21個(gè)數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個(gè)班同學(xué)年齡的中位數(shù)是1歲.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)樹狀圖見解析,則點(diǎn)M所有可能的坐標(biāo)為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結(jié)果;(2)由點(diǎn)M(x,y)在函數(shù)y=﹣2x試題解析:(1)樹狀圖如下圖:則點(diǎn)M所有可能的坐標(biāo)為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點(diǎn)M(x,y)在函數(shù)y=﹣2x∴點(diǎn)M(x,y)在函數(shù)y=﹣2x的圖象上的概率為:2考點(diǎn):列表法或樹狀圖法求概率.18、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點(diǎn),∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點(diǎn)睛】本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識(shí),熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.19、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對(duì)內(nèi)錯(cuò)角相等,再由OA=OD,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到AD為角平分線,利用相等的圓周角所對(duì)的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長(zhǎng),利用勾股定理求出AD的長(zhǎng),由(1)得出的兩個(gè)圓周角相等,及一對(duì)直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長(zhǎng),進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點(diǎn)睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.20、(1);(2)﹣2<x≤1.【解析】

(1)根據(jù)絕對(duì)值、特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)解一元一次不等式組的方法可以解答本題.【詳解】(1)sin45°=3-+×-5+×=3-+3-5+1=7--5;(2)(2)由不等式①,得x>-2,由不等式②,得x≤1,故原不等式組的解集是-2<x≤1.【點(diǎn)睛】本題考查解一元一次不等式組、實(shí)數(shù)的運(yùn)算、特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確解它們各自的解答方法.21、1.4米.【解析】

過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,過(guò)點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長(zhǎng)度,進(jìn)而可得出EF的長(zhǎng)度,再在Rt△MEF中利用勾股定理即可求出EM的長(zhǎng),此題得解.【詳解】過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,過(guò)點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用、勾股定理以及平行四邊形的判定與性質(zhì),正確添加輔助線,構(gòu)造直角三角形,利用勾股定理求出BC的長(zhǎng)度是解題的關(guān)鍵.22、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問(wèn)題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論