版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江西省上饒上饒縣聯(lián)考2025屆九上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.把二次函數(shù)配方后得()A. B.C. D.2.如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G為DF的中點.若BE=1,AG=3,則AB的長是()A. B.2 C. D.3.下列函數(shù)中,的值隨著逐漸增大而減小的是()A. B. C. D.4.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.45.如圖所示,在邊長為1的小正方形網(wǎng)格中,兩個三角形是位似圖形,則它們的位似中心是()A.點O B.點P C.點M D.點N6.拋物線,下列說法正確的是()A.開口向下,頂點坐標(biāo) B.開口向上,頂點坐標(biāo)C.開口向下,頂點坐標(biāo) D.開口向上,頂點坐標(biāo)7.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個8.已知二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1圖象經(jīng)過原點,則a的取值為()A.a(chǎn)=±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.無法確定9.如圖,AB是⊙O的直徑,點C,D在⊙O上.若∠ABD=55°,則∠BCD的度數(shù)為()A.25° B.30° C.35° D.40°10.二次函數(shù)的圖象是一條拋物線,下列說法中正確的是()A.拋物線開口向下 B.拋物線經(jīng)過點C.拋物線的對稱軸是直線 D.拋物線與軸有兩個交點11.如圖,在平面直角坐標(biāo)系內(nèi),正方形OABC的頂點A,B在第一象限內(nèi),且點A,B在反比例函數(shù)y=(k≠0)的圖象上,點C在第四象限內(nèi).其中,點A的縱坐標(biāo)為2,則k的值為()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣412.已知二次函數(shù)的圖像與x軸沒有交點,則()A. B. C. D.二、填空題(每題4分,共24分)13.若一個反比例函數(shù)的圖像經(jīng)過點和,則這個反比例函數(shù)的表達式為__________.14.某公園有一個圓形噴水池,噴出的水流呈拋物線,水流的高度(單位:)與水流噴出時間(單位:)之間的關(guān)系式為,那么水流從噴出至回落到水池所需要的時間是__________.15.如圖,⊙M的半徑為4,圓心M的坐標(biāo)為(6,8),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為____.16.(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內(nèi)接于點O,點E是上的一動點(不與A、B重合),點F是上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結(jié)論:①;②△OGH是等腰三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為.其中正確的是________(把你認(rèn)為正確結(jié)論的序號都填上).17.關(guān)于x的一元二次方程沒有實數(shù)根,則實數(shù)a的取值范圍是.18.一元二次方程x2=x的解為.三、解答題(共78分)19.(8分)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.(2)請在(1)的基礎(chǔ)上,完成下列填空:①寫出點的坐標(biāo):C;D();②⊙D的半徑=(結(jié)果保留根號);③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為;(結(jié)果保留π)④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由.20.(8分)如圖,已知拋物線經(jīng)過、兩點,與軸相交于點.(1)求拋物線的解析式;(2)點是對稱軸上的一個動點,當(dāng)?shù)闹荛L最小時,直接寫出點的坐標(biāo)和周長最小值;(3)點為拋物線上一點,若,求出此時點的坐標(biāo).21.(8分)如圖,在矩形ABCD中,已知AD>AB.在邊AD上取點E,連結(jié)CE.過點E作EF⊥CE,與邊AB的延長線交于點F.(1)求證:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求線段BF的長.22.(10分)如圖,在平面直角坐標(biāo)系中,點從點運動到點停止,連接,以長為直徑作.(1)若,求的半徑;(2)當(dāng)與相切時,求的面積;(3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.23.(10分)已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.(1)求拋物線的解析式;(2)求△MCB的面積.24.(10分)某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:(1)兩個班共有女生多少人?(2)將頻數(shù)分布直方圖補充完整;(3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度數(shù);(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學(xué)校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.25.(12分)一元二次方程的一個根為,求的值及方程另一根.26.如圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬(AB)為4m時,拱頂(拱橋洞的最高點)離水面2m.當(dāng)水面下降1m時,求水面的寬度增加了多少?
參考答案一、選擇題(每題4分,共48分)1、B【分析】運用配方法把一般式化為頂點式即可.【詳解】解:==故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關(guān)鍵.2、B【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,進而得到得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯角相等可得∠ADG=∠CED,再根據(jù)三角形外角定理∠AGE=2∠ADG,從而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式計算即可得解.【詳解】解:∵四邊形ABCD是矩形,點G是DF的中點,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故選:B.【點睛】本題考查了矩形的性質(zhì),等邊對等角的性質(zhì),等角對等邊的性質(zhì),以及勾股定理的應(yīng)用,求出AE=AG是解題的關(guān)鍵.3、D【分析】分別利用一次函數(shù)、正比例函數(shù)、反比例函數(shù)、二次函數(shù)的增減性分析得出答案.【詳解】A選項函數(shù)的圖象是隨著增大而增大,故本選項錯誤;B選項函數(shù)的對稱軸為,當(dāng)時隨增大而減小故本選項錯誤;C選項函數(shù),當(dāng)或,隨著增大而增大故本選項錯誤;D選項函數(shù)的圖象是隨著增大而減小,故本選項正確;故選D.【點睛】本題考查了三種函數(shù)的性質(zhì),了解它們的性質(zhì)是解答本題的關(guān)鍵,難度不大.4、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當(dāng)x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當(dāng)y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識,正確得出A點坐標(biāo)是解題關(guān)鍵.5、B【分析】根據(jù)位似變換的定義:對應(yīng)點的連線交于一點,交點就是位似中心.即位似中心一定在對應(yīng)點的連線上.【詳解】解:位似圖形的位似中心位于對應(yīng)點連線所在的直線上,點M、N為對應(yīng)點,所以位似中心(如圖)在M、N所在的直線上,點P在直線MN上,所以點P為位似中心.
故選:B.【點睛】此題主要考查了位似變換的性質(zhì),利用位似圖形的位似中心位于對應(yīng)點連線所在的直線上,點M、N為對應(yīng)點,得出位似中心在M、N所在的直線上是解題關(guān)鍵.6、C【分析】直接根據(jù)頂點式即可得出頂點坐標(biāo),根據(jù)a的正負即可判斷開口方向.【詳解】∵,∴拋物線開口向下,由頂點式的表達式可知拋物線的頂點坐標(biāo)為,∴拋物線開口向下,頂點坐標(biāo)故選:C.【點睛】本題主要考查頂點式的拋物線的表達式,掌握a對開口方向的影響和頂點坐標(biāo)的確定方法是解題的關(guān)鍵.7、A【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;當(dāng)x=﹣1時圖象在x軸上得到y(tǒng)=a﹣b+c=0,即a+c=b;對稱軸為直線x=1,可得x=2時圖象在x軸上方,則y=4a+2b+c>0;利用對稱軸x=﹣=1得到a=﹣b,而a﹣b+c<0,則﹣b﹣b+c<0,所以2c<3b;開口向下,當(dāng)x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【詳解】解:開口向下,a<0;對稱軸在y軸的右側(cè),a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;當(dāng)x=﹣1時圖象在x軸上,則y=a﹣b+c=0,即a+c=b,所以②不正確;對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確;x=﹣=1,則a=﹣b,而a﹣b+c=0,則﹣b﹣b+c=0,2c=3b,所以④不正確;開口向下,當(dāng)x=1,y有最大值a+b+c;當(dāng)x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當(dāng)a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當(dāng)c>0,拋物線與y軸的交點在x軸的上方;當(dāng)△=b2-4ac>0,拋物線與x軸有兩個交點.8、C【分析】將(0,0)代入y=(a﹣1)x2﹣x+a2﹣1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1的圖象經(jīng)過原點,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值為﹣1.故選:C.【點睛】本題考查了二次函數(shù),二次函數(shù)圖像上的點滿足二次函數(shù)解析式,熟練掌握這一點是解題的關(guān)鍵,同時解題過程中要注意二次項系數(shù)不為0.9、C【詳解】解:連接AD,∵AB是⊙O的直徑,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故選C.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.10、D【分析】根據(jù)二次函數(shù)的性質(zhì)對A、C進行判斷;根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征對B進行判斷;利用方程2x2-1=0解的情況對D進行判斷.【詳解】A.
a=2,則拋物線y=2x2?1的開口向上,所以A選項錯誤;B.當(dāng)x=1時,y=2×1?1=1,則拋物線不經(jīng)過點(1,-1),所以B選項錯誤;C.拋物線的對稱軸為直線x=0,所以C選項錯誤;D.當(dāng)y=0時,2x2?1=0,此方程有兩個不相等的實數(shù)解,所以D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標(biāo)特征,結(jié)合圖像是解題的關(guān)鍵.11、B【分析】作AE⊥x軸于E,BF∥x軸,交AE于F,根據(jù)圖象上點的坐標(biāo)特征得出A(,2),證得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根據(jù)系數(shù)k的幾何意義得到k=(+2)(2-),解得即可.【詳解】解:作AE⊥x軸于E,BF//x軸,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵點A,B在反比例函數(shù)y=(k≠0)的圖象上,點A的縱坐標(biāo)為2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(負數(shù)舍去),∴k=2﹣2,故選:B.【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,反比例函數(shù)的圖象與性質(zhì),關(guān)鍵是構(gòu)造全等三角形.12、C【分析】若二次函數(shù)的圖像與x軸沒有交點,則,解出關(guān)于m、n的不等式,再分別判斷即可;【詳解】解:與軸無交點,,,故A、B錯誤;同理:;故選C.【點睛】本題主要考查了拋物線與坐標(biāo)軸的交點,掌握拋物線與坐標(biāo)軸的交點是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】這個反比例函數(shù)的表達式為,將A、B兩點坐標(biāo)代入,列出方程即可求出k的值,從而求出反比例函數(shù)的表達式.【詳解】解:設(shè)這個反比例函數(shù)的表達式為將點和代入,得化簡,得解得:(反比例函數(shù)與坐標(biāo)軸無交點,故舍去)解得:∴這個反比例函數(shù)的表達式為故答案為:.【點睛】此題考查的是求反比例函數(shù)的表達式,掌握待定系數(shù)法是解決此題的關(guān)鍵.14、1【分析】由于水流從拋出至回落到地面時高度h為0,把h=0代入h=30t-5t2即可求出t,也就求出了水流從拋出至回落到地面所需要的時間.【詳解】水流從拋出至回落到地面時高度h為0,
把h=0代入h=30t-5t2得:5t2-30t=0,
解得:t1=0(舍去),t2=1.
故水流從拋出至回落到地面所需要的時間1s.故答案為:1【點睛】本題考查的是二次函數(shù)在實際生活中的應(yīng)用,關(guān)鍵是正確理解題意,利用函數(shù)解決問題,結(jié)合實際判斷所得出的解.15、1【分析】由Rt△APB中AB=2OP知要使AB取得最小值,則PO需取得最小值,連接OM,交⊙M于點P′,當(dāng)點P位于P′位置時,OP′取得最小值,據(jù)此求解可得.【詳解】解:連接OP,
∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,則PO需取得最小值,
連接OM,交⊙M于點P′,當(dāng)點P位于P′位置時,OP′取得最小值,
過點M作MQ⊥x軸于點Q,
則OQ=6、MQ=8,
∴OM=10,
又∵MP′=4,
∴OP′=6,
∴AB=2OP′=1,
故答案為:1.【點睛】本題主要考查點與圓的位置關(guān)系,解題的關(guān)鍵是根據(jù)直角三角形斜邊上的中線等于斜邊的一半得出AB取得最小值時點P的位置.16、①②.【解析】解:①如圖所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE與△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正確;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正確;③如圖所示,∵△HOM≌△GON,∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.設(shè)BG=x,則BH=1﹣x,則GH====,∴其最小值為,∴△GBH周長的最小值=GB+BH+GH=1+,D錯誤.故答案為①②.17、a>1.【解析】試題分析:∵方程沒有實數(shù)根,∴△=﹣4a<1,解得:a>1,故答案為a>1.考點:根的判別式.18、x1=0,x2=1.【解析】試題分析:首先把x移項,再把方程的左面分解因式,即可得到答案.解:x2=x,移項得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案為x1=0,x2=1.考點:解一元二次方程-因式分解法.三、解答題(共78分)19、(1)①答案見解析;②答案見解析;(2)①C(6,2);D(2,0);②;③;④相切,理由見解析.【分析】(1)①按題目的要求作圖即可②根據(jù)圓心到A、B、C距離相等即可得出D點位置;(2)①C(6,2),弦AB,BC的垂直平分線的交點得出D(2,0);
②OA,OD長已知,△OAD中勾股定理求出⊙D的半徑=2;
③求出∠ADC的度數(shù),得弧ADC的周長,求出圓錐的底面半徑,再求圓錐的底面的面積;
④△CDE中根據(jù)勾股定理的逆定理得∠DCE=90°,直線EC與⊙D相切.【詳解】(1)①②如圖所示:(2)①故答案為:C(6,2);D(2,0);②⊙D的半徑=;故答案為:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧長=圓錐的底面的半徑=,圓錐的底面的面積為π()2=;故答案為:;
(4)直線EC與⊙D相切.
證明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直線EC與⊙D相切.【點睛】本題綜合考查了圖形的性質(zhì)和坐標(biāo)的確定,是綜合性較強,難度較大的綜合題,圓的圓心D是關(guān)鍵.20、(1);(2),;(3),,【分析】(1)把、代入拋物線即可求出b,c即可求解;(2)根據(jù)A,B關(guān)于對稱軸對稱,連接BC交對稱軸于P點,即為所求,再求出坐標(biāo)及的周長;(3)根據(jù)△QAB的底邊為4,故三角形的高為4,令=4,求出對應(yīng)的x即可求解.【詳解】(1)把、代入拋物線得解得∴拋物線的解析式為:;(2)如圖,連接BC交對稱軸于P點,即為所求,∵∴C(0,-3),對稱軸x=1設(shè)直線BC為y=kx+b,把,C(0,-3)代入y=kx+b求得k=1,b=-3,∴直線BC為y=x-3令x=1,得y=-2,∴P(1,-2),∴的周長=AC+AP+CP=AC+BC=+=;(3)∵△QAB的底邊為AB=4,∴三角形的高為4,令=4,即解得x1=,x2=,x3=1故點的坐標(biāo)為,,.【點睛】此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知待定系數(shù)法與一次函數(shù)的求解.21、(1)見解析;(2)1【分析】(1)根據(jù)兩個角對應(yīng)相等判定兩個三角形相似即可;(2)根據(jù)相似三角形的性質(zhì),對應(yīng)邊成比例即可求解.【詳解】(1)證明:四邊形是矩形,,,,.(2).,,,,,,.答:線段的長為1.【點睛】本題考查了相似三角形的判定和性質(zhì),解決本題的關(guān)鍵是掌握相似三角形的判定方法和性質(zhì).22、(1);(2);(3)是,【分析】(1)若,則,代入數(shù)值即可求得CD,從而求得的半徑.(2)當(dāng)與相切時,則CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的長,過P點作PE⊥AO于E點,再利用△CPE∽△CAD,得出比例式求得P點的坐標(biāo),即可求得△POB的面積.(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設(shè)另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則,綜上所述,△PAB的面積是定值,為.【詳解】(1)根據(jù)題意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半徑為(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,當(dāng)與相切時,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD為圓P的直徑∴CP=過P點作PE⊥AO于E點,則∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P點的縱坐標(biāo)為∴△POB的面積=(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設(shè)另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則.綜上所述,△PAB的面積是定值,為.【點睛】本題考查的是圓及相似三角形的綜合應(yīng)用,熟練的掌握直線與圓的位置關(guān)系,相似三角形的判定是關(guān)鍵.23、(1)y=﹣x2+4x+5;(2)1.【分析】(1)由A、C、(1,8)三點在拋物線上,根據(jù)待定系數(shù)法即可求出拋物線的解析式;
(2)由B、C兩點的坐標(biāo)求得直線BC的解析式;過點M作MN∥y軸交BC軸于點N,則△MCB的面積=△MCN的面積+△MNB的面積=【詳解】(1)∵A(﹣1,0),C(0,5),(1,8)三點在拋物線y=ax2+bx+c上,∴,解方程組,得,故拋物線的解析式為y=﹣x2+4x+5;(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,∴M(2,9),B(5,0),設(shè)直線BC的解析式為:y=kx+b,解得,則直線BC的解析式為:y=﹣x+5.過點M作MN∥y軸交BC軸于點N,則△MCB的面積=△MCN的面積+△MNB的面積=當(dāng)x=2時,y=﹣2+5=3,則N(2,3),則MN=9﹣3=6,則【點睛】本題考查拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- BIM工程師-全國《BIM應(yīng)用技能資格》名師預(yù)測試卷3
- 二年級下冊數(shù)學(xué)導(dǎo)學(xué)案
- 花園裙樓幕墻工程施工方案
- 農(nóng)村電網(wǎng)改造升級的技術(shù)路徑
- 老式鐘表走時不準(zhǔn)校正修復(fù)
- 海藻葉片形態(tài)特征與光合作用
- 新視野大學(xué)英語3第三版 大學(xué)英語視聽說3答案
- 高一化學(xué)教案:專題第二單元第二課時化學(xué)反應(yīng)中的熱量變化(二)
- 2024高中物理第一章電場章末質(zhì)量評估一含解析粵教版選修3-1
- 2024高中語文第1單元論語蚜第1課天下有道丘不與易也訓(xùn)練含解析新人教版選修先秦諸子蚜
- 企業(yè)總經(jīng)理管理培訓(xùn)
- 消防培訓(xùn)課件
- 04S206自動噴水與水噴霧滅火設(shè)施安裝圖集
- 《小學(xué)數(shù)學(xué)課堂教學(xué)中創(chuàng)設(shè)情境的實踐研究》開題報告
- DB34∕T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程
- 45001-2020職業(yè)健康安全管理體系危險源識別與風(fēng)險評價及應(yīng)對措施表(各部門)
- 多層鋼結(jié)構(gòu)廠房施工組織設(shè)計#廣西#雙跨門式鋼結(jié)構(gòu)
- 納米復(fù)合材料的增韌增能機制
- 2024-2030年中國鮮果汁行業(yè)發(fā)展分析及發(fā)展趨勢預(yù)測與投資風(fēng)險研究報告
- 鐵路橋涵鋼筋混凝土結(jié)構(gòu)設(shè)計規(guī)范(正文)
- 2023八年級語文上冊 第三單元 13 唐詩五首說課稿 新人教版
評論
0/150
提交評論