2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省德州市寧津縣中考聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.122.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm3.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算4.計算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b65.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數(shù)相加得到一個數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.66.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.7.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進(jìn)出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進(jìn)出的概率是()A. B. C. D.8.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<39.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結(jié)論錯誤的是()A. B. C. D.10.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(

)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限11.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a312.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.14.如圖,在中,于點,于點,為邊的中點,連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時,.請將正確結(jié)論的序號填在橫線上__.15.甲乙兩人進(jìn)行飛鏢比賽,每人各投5次,所得平均環(huán)數(shù)相等,其中甲所得環(huán)數(shù)的方差為15,乙所得環(huán)數(shù)如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).16.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.17.計算:2tan18.某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結(jié)果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.20.(6分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.21.(6分)某市為了解本地七年級學(xué)生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學(xué)生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學(xué)生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有多少人?22.(8分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設(shè)拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.23.(8分)如圖是根據(jù)對某區(qū)初中三個年級學(xué)生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進(jìn)行隨機抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調(diào)查人數(shù);(2)補全條形統(tǒng)計圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀“名人傳記”的學(xué)生是多少人?24.(10分)在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關(guān)于軸對稱的△A1B1C1;以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.25.(10分)閱讀與應(yīng)用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時,函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時,的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))26.(12分)為了保護(hù)視力,學(xué)校開展了全校性的視力保健活動,活動前,隨機抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示分組頻數(shù)4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動所抽取的學(xué)生人數(shù);(2)若視力達(dá)到4.8及以上為達(dá)標(biāo),計算活動前該校學(xué)生的視力達(dá)標(biāo)率;(3)請選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.27.(12分)菏澤市牡丹區(qū)中學(xué)生運動會即將舉行,各個學(xué)校都在積極地做準(zhǔn)備,某校為獎勵在運動會上取得好成績的學(xué)生,計劃購買甲、乙兩種獎品共100件,已知甲種獎品的單價是30元,乙種獎品的單價是20元.(1)若購買這批獎品共用2800元,求甲、乙兩種獎品各購買了多少件?(2)若購買這批獎品的總費用不超過2900元,則最多購買甲種獎品多少件?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.2、C【解析】

根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運用三角形三邊關(guān)系.3、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.4、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進(jìn)行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.5、C【解析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.6、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.7、C【解析】

列表得出進(jìn)出的所有情況,再從中確定出恰好選擇從同一個口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進(jìn)出的有5種情況,∴恰好選擇從同一個口進(jìn)出的概率為=,故選C.【點睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、B【解析】

根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關(guān)鍵是明確解一元一次不等式組的方法.9、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.10、D【解析】

根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負(fù),從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.11、C【解析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關(guān)運算法則是解題關(guān)鍵.12、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對頂角,不能判斷a與b是否平行,故D錯誤.故選D.考點:平行線的判定.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、30【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質(zhì)14、①③④【解析】

①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個角是60°的等腰三角形是等邊三角形可判斷③;④當(dāng)∠ABC=45°時,∠BCN=45°,進(jìn)而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當(dāng)∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.15、甲.【解析】乙所得環(huán)數(shù)的平均數(shù)為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.16、【解析】

仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關(guān)鍵.17、3+3【解析】

本題涉及零指數(shù)冪、負(fù)指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點的運算18、60%【解析】

設(shè)空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據(jù)總價=單價×數(shù)量結(jié)合6月份的電費卻比5月份的電費少25%,即可得出關(guān)于x,y的二元一次方程,解之即可得出x,y之間的關(guān)系,進(jìn)而即可得出結(jié)論.【詳解】設(shè)空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,依題意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%=60%.故答案為60%.【點睛】本題考查了二元一次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析.【解析】

過點B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證.【詳解】證明:如圖,過點B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.20、(1)詳見解析;(2)【解析】

(1)根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質(zhì)和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),難點在于(2)作輔助線構(gòu)造出全等三角形.21、(1)見解析;(2)A;(3)800人.【解析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應(yīng)的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應(yīng)的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學(xué)生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】

(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進(jìn)而可根據(jù)點B的坐標(biāo)來確定點A的坐標(biāo),已知OC=1OA,即可得到點C的坐標(biāo),利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關(guān)于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關(guān)于拋物線對稱軸的對稱點滿足P點的要求,坐標(biāo)易求得;②PD=PC,可設(shè)出點P的坐標(biāo),然后表示出PC、PD的長,根據(jù)它們的等量關(guān)系列式求出點P的坐標(biāo).(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標(biāo);②M、N在x軸上方,且以N為直角頂點時,可設(shè)出點N的坐標(biāo),根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標(biāo),聯(lián)立拋物線的解析式,即可得到關(guān)于N點橫坐標(biāo)的方程,從而求得點Q的坐標(biāo);根據(jù)拋物線的對稱性知:Q關(guān)于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設(shè)P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂點,且M、N在x軸上方時;設(shè)Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對稱性可得Q1(,0);③若N是直角頂點,且M、N在x軸下方時;同理設(shè)Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負(fù),∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對稱性可得Q5(+2,0).【點睛】本題考查了二次函數(shù)的知識點,解題的關(guān)鍵是熟練的掌握二次函數(shù)相關(guān)知識點.23、(1)該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)見解析,最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)估計最喜歡讀“名人傳記”的學(xué)生是4896人【解析】

(1)由“科普知識”人數(shù)及其百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以“漫畫叢書”的人數(shù)求得其人數(shù)即可補全圖形,用360°乘以“其他”人數(shù)所占比例可得;(3)總?cè)藬?shù)乘以“名人傳記”的百分比可得.【詳解】(1)840÷35%=2400(人),∴該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)2400×25%=600(人),∴該區(qū)抽樣調(diào)查最喜歡“漫畫叢書”的人數(shù)是600人,補全圖形如下:×360°=21.6°,∴最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)從樣本估計總體:14400×34%=4896(人),答:估計最喜歡讀“名人傳記”的學(xué)生是4896人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖能夠清楚地表示各部分所占的百分比.24、(1)詳見解析;(2)詳見解析.【解析】

試題分析:(1)直接利用關(guān)于x軸對稱點的性質(zhì)得出對應(yīng)點位置,進(jìn)而得出答案;(2)直接利用位似圖形的性質(zhì)得出對應(yīng)點位置,進(jìn)而得出答案;試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求;考點:作圖-位似變換;作圖-軸對稱變換25、問題1:28

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論