版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市密云區(qū)達標名校2024年中考一模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.482.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同3.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1254.4的平方根是()A.16 B.2 C.±2 D.±5.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,276.如圖,線段AB兩個端點的坐標分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,則端點C的坐標分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)7.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠38.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1079.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(點E不在直線AB、CD、AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數(shù)可能是()A.①②③ B.①②④ C.①③④ D.①②③④10.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°11.若二次函數(shù)y=ax2+bx+c的x與y的部分對應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)12.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知正方形ABCD的邊長為4,⊙B的半徑為2,點P是⊙B上的一個動點,則PD﹣PC的最大值為_____.14.如圖,在中國象棋的殘局上建立平面直角坐標系,如果“相”和“兵”的坐標分別是(3,-1)和(-3,1),那么“卒”的坐標為_____.
15.有一組數(shù)據(jù):2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據(jù)的眾數(shù)是.16.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤17.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.18.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它經(jīng)過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)20.(6分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內(nèi);21.(6分)如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點.(1)若a=1,求反比例函數(shù)的解析式及b的值;(2)在(1)的條件下,根據(jù)圖象直接回答:當x取何值時,反比例函數(shù)大于一次函數(shù)的值?(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.22.(8分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.23.(8分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調(diào)查結(jié)果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.24.(10分)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.試判斷PD與⊙O的位置關(guān)系,并說明理由;若點C是弧AB的中點,已知AB=4,求CE?CP的值.25.(10分)如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設(shè)拋物線的對稱軸DE交線段BC于點E,P為第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.26.(12分)已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).27.(12分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應(yīng)點之間的距離就是平移的距離.2、B【解析】
直接利用已知幾何體分別得出三視圖進而分析得出答案.【詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【點睛】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.3、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.4、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.5、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.6、A【解析】
利用位似圖形的性質(zhì)結(jié)合對應(yīng)點坐標與位似比的關(guān)系得出C點坐標.【詳解】∵以原點O為位似中心,在第一象限內(nèi)將線段AB擴大為原來的2倍后得到線段CD,∴A點與C點是對應(yīng)點,∵C點的對應(yīng)點A的坐標為(2,2),位似比為1:2,∴點C的坐標為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應(yīng)點坐標的關(guān)系是解題關(guān)鍵.7、D【解析】分析:根據(jù)分式有意義的條件進行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.8、B【解析】分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.9、D【解析】
根據(jù)E點有4中情況,分四種情況討論分別畫出圖形,根據(jù)平行線的性質(zhì)與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數(shù)可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質(zhì)與外角定理,解題的關(guān)鍵是根據(jù)題意分情況討論.10、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.11、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.12、A【解析】
先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:由PD?PC=PD?PG≤DG,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG==1.故答案為1點睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會構(gòu)建相似三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,把問題轉(zhuǎn)化為兩點之間線段最短解決,題目比較難,屬于中考壓軸題.14、(-2,-2)【解析】
先根據(jù)“相”和“兵”的坐標確定原點位置,然后建立坐標系,進而可得“卒”的坐標.【詳解】“卒”的坐標為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點睛】考查了坐標確定位置,關(guān)鍵是正確確定原點位置.15、1【解析】根據(jù)平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)為1.故答案為1.16、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).17、【解析】
根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【點睛】本題考查了菱形的性質(zhì),解直角三角形,熟練運用菱形性質(zhì)解決問題是本題的關(guān)鍵.18、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、纜車垂直上升了186m.【解析】
在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應(yīng)該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,銳角三角函數(shù)的定義,結(jié)合圖形理解題意是解決問題的關(guān)鍵.20、圖形見解析【解析】試題分析:(1)根據(jù)同弧所對的圓周角相等和直徑所對的圓周角為直角畫圖即可;(2)延長AC交⊙O于點E,利用(1)的方法畫圖即可.試題解析:如圖①∠DBC就是所求的角;如圖②∠FBE就是所求的角21、(1)反比例函數(shù)的解析式為y=,b的值為﹣1;(1)當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)一次函數(shù)的解析式為y=x+1【解析】
(1)由題意得到A(1,4),設(shè)反比例函數(shù)的解析式為y=(k≠0),根據(jù)待定系數(shù)法即可得到反比例函數(shù)解析式為y=;再由點B(﹣4,b)在反比例函數(shù)的圖象上,得到b=﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),結(jié)合圖象即可得到答案;(3)設(shè)一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,因為A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,得到,解得p=8,a=1,b=﹣1,則A(1,4),B(﹣4,﹣1),由點A、點B在一次函數(shù)y=mx+n圖象上,得到,解得,即可得到答案.【詳解】(1)若a=1,則A(1,4),設(shè)反比例函數(shù)的解析式為y=(k≠0),∵點A在反比例函數(shù)的圖象上,∴4=,解得k=4,∴反比例函數(shù)解析式為y=;∵點B(﹣4,b)在反比例函數(shù)的圖象上,∴b==﹣1,即反比例函數(shù)的解析式為y=,b的值為﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),根據(jù)圖象:當x<﹣4或0<x<1時,反比例函數(shù)大于一次函數(shù)的值;(3)設(shè)一次函數(shù)的解析式為y=mx+n(m≠0),反比例函數(shù)的解析式為y=,∵A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個交點,∴,即,①+②得4a﹣4b=1p,∵a﹣b=4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵點A、點B在一次函數(shù)y=mx+n圖象上,∴解得∴一次函數(shù)的解析式為y=x+1.【點睛】本題考查一次函數(shù)與反比例函數(shù),解題的關(guān)鍵是待定系數(shù)法求函數(shù)解析式.22、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應(yīng)用】:8.【解析】
(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應(yīng)用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學生對平行線性質(zhì),平行四邊形性質(zhì)的綜合應(yīng)用能力,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.23、(1)120,54;(2)補圖見解析;(3)660名;(4).【解析】
(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用360°乘以樣本中電話人數(shù)所占比例;(2)先計算出喜歡使用短信的人數(shù),然后補全條形統(tǒng)計圖;(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學生所占的百分比即可;(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出甲乙兩名同學恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)這次統(tǒng)計共抽查學生24÷20%=120(人),其中最喜歡用電話溝通的所對應(yīng)扇形的圓心角是360°×=54°,故答案為120、54;(2)喜歡使用短信的人數(shù)為120﹣18﹣24﹣66﹣2=10(人),條形統(tǒng)計圖為:(3)1200×=660,所以估計1200名學生中最喜歡用QQ進行溝通的學生有660名;(4)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),甲乙兩名同學恰好選中同一種溝通方式的結(jié)果數(shù)為3,所以甲乙兩名同學恰好選中同一種溝通方式的概率.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖和用樣本估計總體.24、(1)PD是⊙O的切線.證明見解析.(2)1.【解析】試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進而可得∠OPD=90°,從而證明PD是⊙O的切線;(2)連結(jié)BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進而可得,然后可得CE?CP的值.試題解析:(1)如圖,PD是⊙O的切線.證明如下:連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.(2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=()2=1.考點:相似三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;直線與圓的位置關(guān)系;探究型.25、(1)y=﹣38x2+34x+3;D(1,278【解析】
(1)設(shè)拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;(2)畫圖,先根據(jù)點B和C的坐標確定直線BC的解析式,設(shè)P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設(shè)拋物線的解析式為y=a(x+2)(x﹣4),將點C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當x=1時,y=﹣34+3=9∴E(1,94∴DE=278-94=9設(shè)P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,利用方程思想列等式求點的坐標,難度適中.26、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據(jù)反比例函數(shù)的圖象經(jīng)過點A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=12x,再由反比例函數(shù)圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據(jù)y1﹣y2(2)設(shè)BD與x軸交于點E.根據(jù)三角形PBD的面積是8列出方程12?4【詳解】解:(1)設(shè)反比例函數(shù)的解析式為y=kx∵反比例函數(shù)的圖象經(jīng)過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數(shù)的解析式為y=12x∵反比例函數(shù)的圖象經(jīng)過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經(jīng)檢驗,m=1是原方程的解,故m的值是1;(2)設(shè)BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關(guān)鍵.27、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年食品生產(chǎn)線施工合同3篇
- 2024年環(huán)保設(shè)備購銷合同書
- 2024無子女夫妻自愿離婚協(xié)議書:離婚后子女探視權(quán)與溝通協(xié)議3篇
- 2024年足療店線上線下融合合作協(xié)議:多元化發(fā)展2篇
- 2024年股權(quán)代持權(quán)益轉(zhuǎn)移協(xié)議版B版
- 2024年版汽車修理廠權(quán)轉(zhuǎn)讓協(xié)議一
- 《父親的菜園》教學思路
- 電梯升降機銷售心得體會
- 2024年餐飲業(yè)標準餐廳承包經(jīng)營合同模板版B版
- 《電工與電子技術(shù)》課件第15章
- GB/T 45083-2024再生資源分揀中心建設(shè)和管理規(guī)范
- 沖上云霄-飛機鑒賞智慧樹知到期末考試答案2024年
- 粵教版地理七年級下冊全冊課件
- 排水管渠及附屬構(gòu)筑物
- 養(yǎng)豬場施工噪聲環(huán)境影響分析
- Windows-Server-2012網(wǎng)絡(luò)服務(wù)架構(gòu)課件(完整版)
- 形位公差_很詳細(基礎(chǔ)教育)
- 手榴彈使用教案
- 600MW機組除氧器水位控制系統(tǒng)
- 史上最全的涉稅風險
- 初中數(shù)學問題情境的創(chuàng)設(shè)
評論
0/150
提交評論