版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省盤錦市名校2024年中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知為單位向量,=,那么下列結(jié)論中錯(cuò)誤的是()A.∥ B. C.與方向相同 D.與方向相反2.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.3.一個(gè)不透明的袋中有四張完全相同的卡片,把它們分別標(biāo)上數(shù)字1、2、3、1.隨機(jī)抽取一張卡片,然后放回,再隨機(jī)抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.4.如圖,下列各三角形中的三個(gè)數(shù)之間均具有相同的規(guī)律,根據(jù)此規(guī)律,最后一個(gè)三角形中y與n之間的關(guān)系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+15.-3的倒數(shù)是()A.3 B.13 C.-16.設(shè)α,β是一元二次方程x2+2x-1=0的兩個(gè)根,則αβ的值是()A.2B.1C.-2D.-17.已知圓心在原點(diǎn)O,半徑為5的⊙O,則點(diǎn)P(-3,4)與⊙O的位置關(guān)系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定8.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃9.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運(yùn)動(dòng)員射擊一次,命中靶心C.任意畫一個(gè)三角形,其內(nèi)角和是180°D.拋一枚硬幣,落地后正面朝上10.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+1211.下列計(jì)算正確的是()A.x+x=x2B.x·x=2xC.(12.如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于()A.90° B.120° C.60° D.30°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),則ab的值為_____.14.圖1是我國(guó)古代建筑中的一種窗格,其中冰裂紋圖案象征著堅(jiān)冰出現(xiàn)裂紋并開始消溶,形狀無一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.15.把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.16.滿足的整數(shù)x的值是_____.17.將一個(gè)含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點(diǎn)順時(shí)針旋轉(zhuǎn)75°,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在軸上,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為____________.18.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+1.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.求w與x之間的函數(shù)關(guān)系式.該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?20.(6分)觀察規(guī)律并填空.______(用含n的代數(shù)式表示,n是正整數(shù),且n≥2)21.(6分)已知:在△ABC中,AC=BC,D,E,F(xiàn)分別是AB,AC,CB的中點(diǎn).求證:四邊形DECF是菱形.22.(8分)如圖,AB為⊙O直徑,C為⊙O上一點(diǎn),點(diǎn)D是的中點(diǎn),DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若OF=4,求AC的長(zhǎng)度.23.(8分)如圖,AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,DE⊥AC.求證:△BDA∽△CED.24.(10分)計(jì)算:=_____.25.(10分)如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.26.(12分)如圖,AD、BC相交于點(diǎn)O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).27.(12分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長(zhǎng)為4米,求新傳送帶AC的長(zhǎng)及新、原傳送帶觸地點(diǎn)之間AB的長(zhǎng).(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
由向量的方向直接判斷即可.【詳解】解:為單位向量,=,所以與方向相反,所以C錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了向量的方向,是基礎(chǔ)題,較簡(jiǎn)單.2、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點(diǎn)睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個(gè)角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.3、C【解析】【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點(diǎn)睛】本題考查了列表法與樹狀圖法求概率,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、B【解析】
∵觀察可知:左邊三角形的數(shù)字規(guī)律為:1,2,…,n,右邊三角形的數(shù)字規(guī)律為:2,22,…,2下邊三角形的數(shù)字規(guī)律為:1+2,2+22,…,∴最后一個(gè)三角形中y與n之間的關(guān)系式是y=2n+n.故選B.【點(diǎn)睛】考點(diǎn):規(guī)律型:數(shù)字的變化類.5、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C6、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個(gè)根,∴αβ=考點(diǎn):根與系數(shù)的關(guān)系.7、B.【解析】試題解析:∵OP=5,∴根據(jù)點(diǎn)到圓心的距離等于半徑,則知點(diǎn)在圓上.故選B.考點(diǎn):1.點(diǎn)與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì).8、A【解析】
一對(duì)具有相反意義的量中,先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.【詳解】∵“正”和“負(fù)”相對(duì),∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.9、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等,三角形的內(nèi)心到三邊的距離相等,是不可能事件,故本選項(xiàng)不符合題意;B、某射擊運(yùn)動(dòng)員射擊一次,命中靶心是隨機(jī)事件,故本選項(xiàng)不符合題意;C、三角形的內(nèi)角和是180°,是必然事件,故本選項(xiàng)符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機(jī)事件,故本選項(xiàng)不符合題意;故選C.點(diǎn)睛:解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、D【解析】
根據(jù)等式的性質(zhì)2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.【點(diǎn)睛】本題考查了解一元一次方程,注意在去分母時(shí),方程兩端同乘各分母的最小公倍數(shù)時(shí),不要漏乘沒有分母的項(xiàng),同時(shí)要把分子(如果是一個(gè)多項(xiàng)式)作為一個(gè)整體加上括號(hào).11、D【解析】分析:根據(jù)合并同類項(xiàng)、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運(yùn)算法則計(jì)算即可.解答:解:A、x+x=2x,選項(xiàng)錯(cuò)誤;B、x?x=x2,選項(xiàng)錯(cuò)誤;C、(x2)3=x6,選項(xiàng)錯(cuò)誤;D、正確.故選D.12、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點(diǎn)睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長(zhǎng).解題時(shí)注意:垂直弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。⑻羁疹}:(本大題共6個(gè)小題,每小題4分,共24分.)13、2【解析】
根據(jù)“關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”求出ab的值即可.【詳解】∵點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點(diǎn)睛】本題考查了關(guān)于x軸,y軸對(duì)稱的點(diǎn)的坐標(biāo),解題的關(guān)鍵是熟練的掌握關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)的性質(zhì).14、360°.【解析】
根據(jù)多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點(diǎn)睛】本題考查的是多邊形的內(nèi)角和外角,掌握多邊形的外角和等于360°是解題的關(guān)鍵.15、1【解析】
過點(diǎn)O作OM⊥EF于點(diǎn)M,反向延長(zhǎng)OM交BC于點(diǎn)N,連接OF,設(shè)OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長(zhǎng)即可.【詳解】過點(diǎn)O作OM⊥EF于點(diǎn)M,反向延長(zhǎng)OM交BC于點(diǎn)N,連接OF,設(shè)OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.16、3,1【解析】
直接得出2<<3,1<<5,進(jìn)而得出答案.【詳解】解:∵2<<3,1<<5,∴的整數(shù)x的值是:3,1.故答案為:3,1.【點(diǎn)睛】此題主要考查了估算無理數(shù)的大小,正確得出接近的有理數(shù)是解題關(guān)鍵.17、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵點(diǎn)C的坐標(biāo)為(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時(shí)也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長(zhǎng)度,即可解決問題.18、1.【解析】試題分析:如圖,∵矩形的對(duì)邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點(diǎn):1軸對(duì)稱;2矩形的性質(zhì);3等腰三角形.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)該產(chǎn)品銷售價(jià)定為每千克30元時(shí),每天銷售利潤(rùn)最大,最大銷售利潤(rùn)2元;(3)該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克25元.【解析】
(1)根據(jù)銷售額=銷售量×銷售價(jià)單x,列出函數(shù)關(guān)系式.(2)用配方法將(2)的函數(shù)關(guān)系式變形,利用二次函數(shù)的性質(zhì)求最大值.(3)把y=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數(shù)關(guān)系式為:.(2),∵﹣2<0,∴當(dāng)x=30時(shí),w有最大值.w最大值為2.答:該產(chǎn)品銷售價(jià)定為每千克30元時(shí),每天銷售利潤(rùn)最大,最大銷售利潤(rùn)2元.(3)當(dāng)w=150時(shí),可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應(yīng)舍去.答:該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克25元.20、【解析】
由前面算式可以看出:算式的左邊利用平方差公式因式分解,中間的數(shù)字互為倒數(shù),乘積為1,只剩下兩端的(1﹣)和(1+)相乘得出結(jié)果.【詳解】===.故答案為:.【點(diǎn)睛】本題考查了算式的運(yùn)算規(guī)律,找出數(shù)字之間的聯(lián)系,得出運(yùn)算規(guī)律,解決問題.21、見解析【解析】
證明:∵D、E是AB、AC的中點(diǎn)∴DE=BC,EC=AC∵D、F是AB、BC的中點(diǎn)∴DF=AC,F(xiàn)C=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四邊形DECF是菱形22、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點(diǎn)D是的中點(diǎn),∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長(zhǎng).AC=823、證明見解析.【解析】
不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對(duì)角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【點(diǎn)睛】本題重點(diǎn)考查了圓周角定理、直徑所對(duì)的圓周角為直角及相似三角形判定等知識(shí)的綜合運(yùn)用.24、1【解析】
首先計(jì)算負(fù)整數(shù)指數(shù)冪和開平方,再計(jì)算減法即可.【詳解】解:原式=9﹣3=1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)運(yùn)算,關(guān)鍵是掌握負(fù)整數(shù)指數(shù)冪:為正整數(shù)).25、證明見解析.【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東警官學(xué)院《醫(yī)學(xué)影像診斷學(xué)(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東海洋大學(xué)《明史趣談》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工商職業(yè)技術(shù)大學(xué)《矩陣風(fēng)采》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東潮州衛(wèi)生健康職業(yè)學(xué)院《廣播電視職業(yè)資格》2023-2024學(xué)年第一學(xué)期期末試卷
- 《精準(zhǔn)營(yíng)銷體系研究》課件
- 小學(xué)生玩手機(jī)害處課件
- 小學(xué)生考前減壓課件下載
- 廣東碧桂園職業(yè)學(xué)院《石油煉制工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 防溺水安全中班課件圖片
- 小學(xué)生學(xué)電腦課件
- 湖南省湘西自治州四校2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 期末 (試題) -2024-2025學(xué)年川教版(三起)英語五年級(jí)上冊(cè)
- 2025屆四川省新高考八省適應(yīng)性聯(lián)考模擬演練 生物試卷(含答案)
- 2024年中醫(yī)執(zhí)業(yè)醫(yī)師資格考試題庫(kù)及答案
- 安全生產(chǎn)方案及保證措施
- 非物質(zhì)文化遺產(chǎn)主題班會(huì)之英歌舞課件
- 柯橋區(qū)五年級(jí)上學(xué)期語文期末學(xué)業(yè)評(píng)價(jià)測(cè)試試卷
- 中國(guó)礦業(yè)大學(xué)《自然辯證法》2022-2023學(xué)年期末試卷
- 北京市豐臺(tái)區(qū)2024屆高三下學(xué)期二模試題 數(shù)學(xué) 含解析
- TCWAN 0105-2024 攪拌摩擦焊接機(jī)器人系統(tǒng)技術(shù)條件
- 江蘇省期無錫市天一實(shí)驗(yàn)學(xué)校2023-2024學(xué)年英語七年級(jí)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含答案
評(píng)論
0/150
提交評(píng)論