新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆兵團八師一四三團一中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.a(chǎn)3?a2=a6 B.a(chǎn)﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+42.多項式4a﹣a3分解因式的結(jié)果是()A.a(chǎn)(4﹣a2)B.a(chǎn)(2﹣a)(2+a)C.a(chǎn)(a﹣2)(a+2)D.a(chǎn)(2﹣a)23.在平面直角坐標(biāo)系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)4.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°6.不等式組1-x≤0,3x-6<0A. B. C. D.7.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.48.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標(biāo)分別為1、2、3,且OD=DE=1,則下列結(jié)論正確的個數(shù)是()①,②S△ABC=1,③OF=5,④點B的坐標(biāo)為(2,2.5)A.1個 B.2個 C.3個 D.4個9.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.10.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.12.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結(jié)論的序號都填上)13.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.14.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.15.若反比例函數(shù)y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.16.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標(biāo)為_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.18.(8分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.19.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.20.(8分)為上標(biāo)保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設(shè)從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調(diào)配方案.21.(8分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.22.(10分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時,兩人相距15km?23.(12分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點,旋轉(zhuǎn)了(度);(II)當(dāng)點E從點D向點C移動時,連結(jié)AF,設(shè)AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.24.甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.求甲乙兩件服裝的進價各是多少元;由于乙服裝暢銷,制衣廠經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;若每件乙服裝進價按平均增長率再次上調(diào),商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數(shù)).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

直接利用同底數(shù)冪的乘除運算法則、負指數(shù)冪的性質(zhì)、二次根式的加減運算法則、平方差公式分別計算即可得出答案.【詳解】A、a3?a2=a5,故A選項錯誤;B、a﹣2=,故B選項錯誤;C、3﹣2=,故C選項正確;D、(a+2)(a﹣2)=a2﹣4,故D選項錯誤,故選C.【點睛】本題考查了同底數(shù)冪的乘除運算以及負指數(shù)冪的性質(zhì)以及二次根式的加減運算、平方差公式,正確掌握相關(guān)運算法則是解題關(guān)鍵.2、B【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關(guān)鍵.3、D【解析】

根據(jù)在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應(yīng)點A′的坐標(biāo)是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標(biāo)的關(guān)系.此題比較簡單,注意在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)比等于±k.4、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.5、C【解析】

這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).6、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.7、A【解析】

先計算括號內(nèi)分式的減法,再將除法轉(zhuǎn)化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運算順序和運算法則.8、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設(shè)過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結(jié)論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結(jié)論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應(yīng)的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設(shè)過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應(yīng)的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標(biāo)的性質(zhì)、三角形的面積求法、相似三角形的性質(zhì)和判定、平行線等分線段定理、函數(shù)圖象交點等知識及綜合應(yīng)用知識、解決問題的能力.考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.9、C【解析】

代入y=0求出x的值,進而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【詳解】解:當(dāng)y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點睛】本題考查了拋物線與x軸的交點坐標(biāo)、二次函數(shù)圖象上點的坐標(biāo)特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點的坐標(biāo)特征求出MaNa的值是解題的關(guān)鍵.10、D【解析】

根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.12、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.13、6.【解析】

作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點A為函數(shù)y=(x>0)的圖象上一點,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.14、cm【解析】

利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.15、m>1【解析】∵反比例函數(shù)的圖象在其每個象限內(nèi),y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.16、【解析】

如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.三、解答題(共8題,共72分)17、證明見解析【解析】試題分析:先根據(jù)垂直的定義得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根據(jù)有兩個角相等的兩三角形相似即可得出結(jié)論.試題解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.點睛:本題考查的是相似三角形的判定,熟知有兩組角對應(yīng)相等的兩個三角形相似是解答此題的關(guān)鍵.18、(1)3;(2)x﹣y,1.【解析】

(1)根據(jù)特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018=3×+2-+3-1-1,=+2?+3-1-1,=3;(2)(x﹣)÷,=,==x-y,當(dāng)x=,y=-1時,原式=?+1=1.【點睛】本題考查特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪、分式的化簡求值,解答本題的關(guān)鍵是明確它們各自的計算方法.19、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF20、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設(shè)從甲倉庫運x噸往A港口,根據(jù)題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關(guān)系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數(shù)關(guān)系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數(shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當(dāng)x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設(shè)從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當(dāng)x=1時總運費最小,當(dāng)x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數(shù)的應(yīng)用.21、詳見解析【解析】

由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握等邊三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.22、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時或小時,兩人相距15km.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得s與t的函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)解析式可以解答本題.【詳解】解:(1)設(shè)sA與t的函數(shù)關(guān)系式為sA=kt+b,,得,即sA與t的函數(shù)關(guān)系式為sA=45t﹣45,設(shè)sB與t的函數(shù)關(guān)系式為sB=at,60=3a,得a=20,即sB與t的函數(shù)關(guān)系式為sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論