2023-2024學(xué)年湖北省宜昌市部分省級(jí)示范高中高一上學(xué)期9月考試數(shù)學(xué)試題(解析版)_第1頁(yè)
2023-2024學(xué)年湖北省宜昌市部分省級(jí)示范高中高一上學(xué)期9月考試數(shù)學(xué)試題(解析版)_第2頁(yè)
2023-2024學(xué)年湖北省宜昌市部分省級(jí)示范高中高一上學(xué)期9月考試數(shù)學(xué)試題(解析版)_第3頁(yè)
2023-2024學(xué)年湖北省宜昌市部分省級(jí)示范高中高一上學(xué)期9月考試數(shù)學(xué)試題(解析版)_第4頁(yè)
2023-2024學(xué)年湖北省宜昌市部分省級(jí)示范高中高一上學(xué)期9月考試數(shù)學(xué)試題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高級(jí)中學(xué)名校試卷PAGEPAGE1湖北省宜昌市部分省級(jí)示范高中2023-2024學(xué)年高一上學(xué)期9月考試試題一、單項(xiàng)選擇題:本大題共8小題,每小題5分,共40分,在給出的四個(gè)選項(xiàng)中只有一項(xiàng)是正確的.1.已知集合A={0,1},則下列關(guān)系表示錯(cuò)誤的是()A.0∈A B.{1}∈A C.??A D.{0,1}?A〖答案〗B〖解析〗根據(jù)元素與集合關(guān)系的表示法,0∈A,故A正確;

根據(jù)集合與集合關(guān)系的表示法,{1}?A,判斷B假;

?是任意集合的子集,故C正確;

根據(jù)集合子集的定義,{0,1}?A,故D正確.

故選B.2.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件〖答案〗B〖解析〗由,得,又由,得,因?yàn)榧希浴啊笔恰啊钡谋匾怀浞謼l件.故選:B.3.設(shè),,,為實(shí)數(shù),且,則下列不等式正確的是()A. B.C. D.〖答案〗D〖解析〗已知,對(duì)各選項(xiàng)逐一判斷:選項(xiàng)A:因?yàn)?由不等式的性質(zhì),兩邊同乘負(fù)數(shù),不等式變號(hào),可得,所以選項(xiàng)A錯(cuò)誤;選項(xiàng)B:取,,,,則,,此時(shí),所以選項(xiàng)B錯(cuò)誤;選項(xiàng)C:取,,,,則,,此時(shí),所以選項(xiàng)C錯(cuò)誤;選項(xiàng)D:因?yàn)?所以,所以,即,所以選項(xiàng)D正確.故選:D.4.中國(guó)古代重要的數(shù)學(xué)著作《孫子算經(jīng)》下卷有題:今有物,不知其數(shù),三三數(shù)之,剩二;五五數(shù)之,剩三;七七數(shù)之,剩二.問(wèn):物幾何?現(xiàn)有如下表示:已知,若,則整數(shù)的最小值為()A. B. C. D.〖答案〗D〖解析〗解:因?yàn)榍笳麛?shù)的最小值,所以從最小的數(shù)開(kāi)始帶入檢驗(yàn)即可:當(dāng)=23時(shí),,故;,故;,故,,故選D.5.已知,,則的取值范圍是()A.B.C.D.〖答案〗B〖解析〗設(shè),則解得,∴,又,,∴即.故選:B.6.如果不等式成立的充分不必要條件是;則實(shí)數(shù)的取值范圍是()A.B. C.D.〖答案〗B〖解析〗,解得:,所以成立的充分不必要條件是,故是的真子集,所以或,解得:,故實(shí)數(shù)的取值范圍是.故選:B.7.已知,則下列不等式中不成立的是()A. B.C. D.〖答案〗D〖解析〗解:因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立,A成立;因?yàn)?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,B成立;因?yàn)椋?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,C成立;因?yàn)?,且,所以,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,D不成立.故選:D.8.若對(duì)一切恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.〖答案〗B〖解析〗因?yàn)椴坏仁剑ǎ?,所以或(),①?dāng)時(shí),,所以不等式的解集為,所以原不等式不可能對(duì)一切恒成立,故不符合題意;②當(dāng)時(shí),,所以不等式的解集為或,又因?yàn)樵坏仁綄?duì)一切恒成立,所以,解得,③當(dāng)時(shí),,所以不等式的解集為或,又因?yàn)樵坏仁綄?duì)一切恒成立,所以,解得,綜述,.故選:B.二.多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.已知集合,若集合A有且僅有2個(gè)子集,則a的取值有()A.-2 B.-1 C.0 D.1〖答案〗BCD〖解析〗因?yàn)榧蟽H有個(gè)子集,所以集合中僅有一個(gè)元素,當(dāng)時(shí),,所以,所以,滿足要求;當(dāng)時(shí),因集合中僅有一個(gè)元素,所以,所以,此時(shí)或,滿足要求.故選:BCD.10.設(shè)集合,則下列說(shuō)法不正確的是()A.若有4個(gè)元素,則B.若,則有4個(gè)元素C.若,則D.若,則〖答案〗ABC〖解析〗(1)當(dāng)時(shí),,;(2)當(dāng)時(shí),,;(3)當(dāng)時(shí),,;(4)當(dāng)時(shí),,.故A,B,C,不正確,D正確.故選:ABC.11.若不等式的解集是,則下列選項(xiàng)正確的是()A.且B.C.D.不等式的解集是〖答案〗ABD〖解析〗因?yàn)榈慕饧癁?,解集屬于兩根之?nèi)的情況,所以,又因?yàn)椋?;A.,故正確;B.因?yàn)?,所以,故正確;C.因?yàn)榻饧癁椋?,故錯(cuò)誤;D.因?yàn)榧礊椋?,解得,故正確;故選:ABD.12.下列說(shuō)法正確的有()A.的最小值為2B.已知,則的最小值為C.若正數(shù)x、y滿足,則的最小值為3D.設(shè)x、y為實(shí)數(shù),若,則的最大值為〖答案〗BCD〖解析〗對(duì)于A,當(dāng)時(shí),,A錯(cuò)誤;對(duì)于B,當(dāng)時(shí),,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),B正確;對(duì)于C,若正數(shù)x、y滿足,即,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),C正確;對(duì)于D,,于是,解得,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最大值,D正確.故選:BCD.三、填空題:本大題共4小題,每小題5分,共20分.13.某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組,每名同學(xué)至多參加兩個(gè)小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時(shí)參加數(shù)學(xué)和物理小組的有6人,同時(shí)參加物理和化學(xué)小組的有4人,則同時(shí)參加數(shù)學(xué)和化學(xué)小組的有__________人.〖答案〗8〖解析〗由條件知,每名同學(xué)至多參加兩個(gè)小組,故不可能出現(xiàn)一名同學(xué)同時(shí)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組,設(shè)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組的人數(shù)構(gòu)成的集合分別為,,,則,,,由公式知,故,即同時(shí)參加數(shù)學(xué)和化學(xué)小組的有8人,故〖答案〗為8.14.一元二次不等式的解集為,則一元一次不等式的解集為_(kāi)____.〖答案〗〖解析〗因?yàn)橐辉尾坏仁降慕饧癁?,所以的兩個(gè)根分別為-3和1,由韋達(dá)定理知,,解得,代入中,所以,所以一元一次不等式的解集為.故〖答案〗為:.15.命題“,關(guān)于的不等式<5成立”為假命題,則實(shí)數(shù)a的取值范圍是__________.〖答案〗〖解析〗依題意,命題“,關(guān)于的不等式成立”,當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,解得,所以實(shí)數(shù)a的取值范圍是.故〖答案〗為:.16.若存在實(shí)數(shù),使得關(guān)于的不等式成立,則實(shí)數(shù)的取值范圍是______.〖答案〗〖解析〗時(shí),若,則不等式為,不等式成立,滿足題意,時(shí),在使得不等式成立,則,∴,綜上,.故〖答案〗為:.四、解答題本題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.17.設(shè)A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C.解:(1)∵A∩B={2},∴4+2a+12=0,即a=-8,4+6+2b=0,即b=-5,∴A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)∵A∪B={-5,2,6},C={2,-3},∴(A∪B)∩C={2}.18.已知,.(1)若不等式恒成立,求的最大值;(2)若,求的最小值.解:(1):因?yàn)?,,則,而,當(dāng)且僅當(dāng),即時(shí)取等號(hào),依題意,不等式恒成立,于是,所以m的最大值為12.(2)若,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),于是,而,解得,所以的最小值為4.19.在①,②關(guān)于的不等式的解集為,③一次函數(shù)的圖象過(guò),兩點(diǎn),這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中并解答.問(wèn)題:已知__________,求關(guān)于的不等式的解集.解:若選①,若,解得,不符合條件;若,解得,則符合條件;將代入不等式整理得,解得或,故原不等式的解集為:.若選②,因?yàn)椴坏仁降慕饧癁?,所以,解得,將代入不等式整理得,解得或,故原不等式的解集為:.若選③,由題得,解得.將代入不等式整理得,解得或,故原不等式的解集為:.20.(1)已知正數(shù)、滿足,求的最小值;(2)求函數(shù)最小值.解:(1)因?yàn)?,,所以,,所以,?dāng)且僅當(dāng),且,即時(shí),等號(hào)成立,故的最小值為;(2)因?yàn)?,所以,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,故函數(shù)的最小值.21.命題:實(shí)數(shù)滿足(其中),命題:實(shí)數(shù)滿足.(1)若,且命題均為真命題,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.解:(1)由得,又,所以,當(dāng)時(shí),,即為真時(shí)實(shí)數(shù)取值范圍是,由,得解得,即為真時(shí)實(shí)數(shù)的取值范圍是,均為真命題,所以實(shí)數(shù)的取值范圍是.(2)由(1)知,,是充分不必要條件,解得,故實(shí)數(shù)的取值范圍是.22.第四屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2021年11月5日至10日在上海舉行.本屆進(jìn)博會(huì)有4000多項(xiàng)新產(chǎn)品?新技術(shù)?新服務(wù).某跨國(guó)公司帶來(lái)了高端空調(diào)模型參展,通過(guò)展會(huì)調(diào)研,中國(guó)甲企業(yè)計(jì)劃在2022年與該跨國(guó)公司合資生產(chǎn)此款空調(diào).生產(chǎn)此款空調(diào)預(yù)計(jì)全年需投入固定成本260萬(wàn)元,生產(chǎn)x千臺(tái)空調(diào),需另投入資金R萬(wàn)元,且.經(jīng)測(cè)算,當(dāng)生產(chǎn)10千臺(tái)空調(diào)時(shí)需另投入的資金R=4000萬(wàn)元.現(xiàn)每臺(tái)空調(diào)售價(jià)為0.9萬(wàn)元時(shí),當(dāng)年內(nèi)生產(chǎn)的空調(diào)當(dāng)年能全部銷(xiāo)售完.(1)求2022年該企業(yè)年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千臺(tái))的函數(shù)關(guān)系式;(2)2022年產(chǎn)量為多少時(shí),該企業(yè)所獲年利潤(rùn)最大?最大年利潤(rùn)為多少?注:利潤(rùn)=銷(xiāo)售額-成本.解:(1)由題意知,當(dāng)時(shí),,所以a=300.當(dāng)時(shí),;當(dāng)時(shí),;所以.(2)當(dāng)時(shí),,所以當(dāng)時(shí),W有最大值,最大值為8740;當(dāng)時(shí),,當(dāng)且僅當(dāng),即x=100時(shí),W有最大值,最大值為8990;因?yàn)?,所以?dāng)2022年產(chǎn)量為100千臺(tái)時(shí),該企業(yè)年利潤(rùn)最大,最大年利潤(rùn)為8990萬(wàn)元.湖北省宜昌市部分省級(jí)示范高中2023-2024學(xué)年高一上學(xué)期9月考試試題一、單項(xiàng)選擇題:本大題共8小題,每小題5分,共40分,在給出的四個(gè)選項(xiàng)中只有一項(xiàng)是正確的.1.已知集合A={0,1},則下列關(guān)系表示錯(cuò)誤的是()A.0∈A B.{1}∈A C.??A D.{0,1}?A〖答案〗B〖解析〗根據(jù)元素與集合關(guān)系的表示法,0∈A,故A正確;

根據(jù)集合與集合關(guān)系的表示法,{1}?A,判斷B假;

?是任意集合的子集,故C正確;

根據(jù)集合子集的定義,{0,1}?A,故D正確.

故選B.2.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件〖答案〗B〖解析〗由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B.3.設(shè),,,為實(shí)數(shù),且,則下列不等式正確的是()A. B.C. D.〖答案〗D〖解析〗已知,對(duì)各選項(xiàng)逐一判斷:選項(xiàng)A:因?yàn)?由不等式的性質(zhì),兩邊同乘負(fù)數(shù),不等式變號(hào),可得,所以選項(xiàng)A錯(cuò)誤;選項(xiàng)B:取,,,,則,,此時(shí),所以選項(xiàng)B錯(cuò)誤;選項(xiàng)C:取,,,,則,,此時(shí),所以選項(xiàng)C錯(cuò)誤;選項(xiàng)D:因?yàn)?所以,所以,即,所以選項(xiàng)D正確.故選:D.4.中國(guó)古代重要的數(shù)學(xué)著作《孫子算經(jīng)》下卷有題:今有物,不知其數(shù),三三數(shù)之,剩二;五五數(shù)之,剩三;七七數(shù)之,剩二.問(wèn):物幾何?現(xiàn)有如下表示:已知,若,則整數(shù)的最小值為()A. B. C. D.〖答案〗D〖解析〗解:因?yàn)榍笳麛?shù)的最小值,所以從最小的數(shù)開(kāi)始帶入檢驗(yàn)即可:當(dāng)=23時(shí),,故;,故;,故,,故選D.5.已知,,則的取值范圍是()A.B.C.D.〖答案〗B〖解析〗設(shè),則解得,∴,又,,∴即.故選:B.6.如果不等式成立的充分不必要條件是;則實(shí)數(shù)的取值范圍是()A.B. C.D.〖答案〗B〖解析〗,解得:,所以成立的充分不必要條件是,故是的真子集,所以或,解得:,故實(shí)數(shù)的取值范圍是.故選:B.7.已知,則下列不等式中不成立的是()A. B.C. D.〖答案〗D〖解析〗解:因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立,A成立;因?yàn)?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,B成立;因?yàn)椋?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,C成立;因?yàn)?,且,所以,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,D不成立.故選:D.8.若對(duì)一切恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.〖答案〗B〖解析〗因?yàn)椴坏仁剑ǎ?,所以或(),①?dāng)時(shí),,所以不等式的解集為,所以原不等式不可能對(duì)一切恒成立,故不符合題意;②當(dāng)時(shí),,所以不等式的解集為或,又因?yàn)樵坏仁綄?duì)一切恒成立,所以,解得,③當(dāng)時(shí),,所以不等式的解集為或,又因?yàn)樵坏仁綄?duì)一切恒成立,所以,解得,綜述,.故選:B.二.多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.已知集合,若集合A有且僅有2個(gè)子集,則a的取值有()A.-2 B.-1 C.0 D.1〖答案〗BCD〖解析〗因?yàn)榧蟽H有個(gè)子集,所以集合中僅有一個(gè)元素,當(dāng)時(shí),,所以,所以,滿足要求;當(dāng)時(shí),因集合中僅有一個(gè)元素,所以,所以,此時(shí)或,滿足要求.故選:BCD.10.設(shè)集合,則下列說(shuō)法不正確的是()A.若有4個(gè)元素,則B.若,則有4個(gè)元素C.若,則D.若,則〖答案〗ABC〖解析〗(1)當(dāng)時(shí),,;(2)當(dāng)時(shí),,;(3)當(dāng)時(shí),,;(4)當(dāng)時(shí),,.故A,B,C,不正確,D正確.故選:ABC.11.若不等式的解集是,則下列選項(xiàng)正確的是()A.且B.C.D.不等式的解集是〖答案〗ABD〖解析〗因?yàn)榈慕饧癁?,解集屬于兩根之?nèi)的情況,所以,又因?yàn)?,所以;A.,故正確;B.因?yàn)?,所以,故正確;C.因?yàn)榻饧癁椋?,故錯(cuò)誤;D.因?yàn)榧礊?,即,解得,故正確;故選:ABD.12.下列說(shuō)法正確的有()A.的最小值為2B.已知,則的最小值為C.若正數(shù)x、y滿足,則的最小值為3D.設(shè)x、y為實(shí)數(shù),若,則的最大值為〖答案〗BCD〖解析〗對(duì)于A,當(dāng)時(shí),,A錯(cuò)誤;對(duì)于B,當(dāng)時(shí),,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),B正確;對(duì)于C,若正數(shù)x、y滿足,即,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),C正確;對(duì)于D,,于是,解得,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最大值,D正確.故選:BCD.三、填空題:本大題共4小題,每小題5分,共20分.13.某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組,每名同學(xué)至多參加兩個(gè)小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時(shí)參加數(shù)學(xué)和物理小組的有6人,同時(shí)參加物理和化學(xué)小組的有4人,則同時(shí)參加數(shù)學(xué)和化學(xué)小組的有__________人.〖答案〗8〖解析〗由條件知,每名同學(xué)至多參加兩個(gè)小組,故不可能出現(xiàn)一名同學(xué)同時(shí)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組,設(shè)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽小組的人數(shù)構(gòu)成的集合分別為,,,則,,,由公式知,故,即同時(shí)參加數(shù)學(xué)和化學(xué)小組的有8人,故〖答案〗為8.14.一元二次不等式的解集為,則一元一次不等式的解集為_(kāi)____.〖答案〗〖解析〗因?yàn)橐辉尾坏仁降慕饧癁?,所以的兩個(gè)根分別為-3和1,由韋達(dá)定理知,,解得,代入中,所以,所以一元一次不等式的解集為.故〖答案〗為:.15.命題“,關(guān)于的不等式<5成立”為假命題,則實(shí)數(shù)a的取值范圍是__________.〖答案〗〖解析〗依題意,命題“,關(guān)于的不等式成立”,當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,解得,所以實(shí)數(shù)a的取值范圍是.故〖答案〗為:.16.若存在實(shí)數(shù),使得關(guān)于的不等式成立,則實(shí)數(shù)的取值范圍是______.〖答案〗〖解析〗時(shí),若,則不等式為,不等式成立,滿足題意,時(shí),在使得不等式成立,則,∴,綜上,.故〖答案〗為:.四、解答題本題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.17.設(shè)A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C.解:(1)∵A∩B={2},∴4+2a+12=0,即a=-8,4+6+2b=0,即b=-5,∴A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)∵A∪B={-5,2,6},C={2,-3},∴(A∪B)∩C={2}.18.已知,.(1)若不等式恒成立,求的最大值;(2)若,求的最小值.解:(1):因?yàn)?,,則,而,當(dāng)且僅當(dāng),即時(shí)取等號(hào),依題意,不等式恒成立,于是,所以m的最大值為12.(2)若,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),于是,而,解得,所以的最小值為4.19.在①,②關(guān)于的不等式的解集為,③一次函數(shù)的圖象過(guò),兩點(diǎn),這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中并解答.問(wèn)題:已知__________,求關(guān)于的不等式的解集.解:若選①,若,解得,不符合條件;若,解得,則符合條件;將代入不等式整理得,解得或,故原不等式的解集為:.若選②,因?yàn)椴坏?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論