安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省合肥市一六八中學(xué)2025屆九上數(shù)學(xué)期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.242.如圖,在中,,將繞點逆時針旋轉(zhuǎn)得到,其中點與點是對應(yīng)點,且點在同一條直線上;則的長為()A. B. C. D.3.在△ABC中,∠C90°.若AB3,BC1,則的值為()A. B. C. D.4.如圖,在△ABC中,∠A=75°,AB=6,AC=8,將△ABC沿圖中的虛線剪開,剪下的陰影三角形與原三角形不相似的是()A. B. C. D.5.如圖,是正方形與正六邊形的外接圓.則正方形與正六邊形的周長之比為()A. B. C. D.6.如圖,在半徑為1的⊙O中,直徑AB把⊙O分成上、下兩個半圓,點C是上半圓上一個動點(C與點A、B不重合),過點C作弦CD⊥AB,垂足為E,∠OCD的平分線交⊙O于點P,設(shè)CE=x,AP=y(tǒng),下列圖象中,最能刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.7.如圖,小明想利用太陽光測量樓高,發(fā)現(xiàn)對面墻上有這棟樓的影子,小明邊移動邊觀察,發(fā)現(xiàn)站在點處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重合且高度恰好相同.此時測得墻上影子高(點在同一條直線上).已知小明身高是,則樓高為()A. B. C. D.8.如圖,在正方形ABCD中,AB=5,點M在CD的邊上,且DM=2,△AEM與△ADM關(guān)于AM所在的直線對稱,將△ADM按順時針方向繞點A旋轉(zhuǎn)90°得到△ABF,連接EF,則線段EF的長為()A. B. C. D.9.商場舉行摸獎促銷活動,對于“抽到一等獎的概率為0.01”.下列說法正確的是()A.抽101次也可能沒有抽到一等獎B.抽100次獎必有一次抽到一等獎C.抽一次不可能抽到一等獎D.抽了99次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎10.如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為()A.π﹣6 B.π C.π﹣3 D.+π11.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.12.如圖,△ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以O(shè)B為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是()A.2 B. C. D.二、填空題(每題4分,共24分)13.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個“果圓”被y軸截得的線段CD的長為_____.14.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.15.已知,且,則的值為__________.16.若一個圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,則該圓錐的側(cè)面積是____________.17.已知非負數(shù)a、b、c滿足a+b=2,,,則d的取值范圍為____.18.在△ABC中,∠C=90°,AC=,∠CAB的平分線交BC于D,且,那么tan∠BAC=_________.三、解答題(共78分)19.(8分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰去.規(guī)則如下:將正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上,再隨機抽出一張記下數(shù)字.如果兩個數(shù)字之和為奇數(shù),則小明去;如果兩個數(shù)字之和為偶數(shù),則小亮去.(1)請用列表或畫樹狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn)的結(jié)果;(2)你認(rèn)為這個規(guī)則公平嗎?請說明理由.20.(8分)如圖,一天,我國一漁政船航行到A處時,發(fā)現(xiàn)正東方向的我領(lǐng)海區(qū)域B處有一可疑漁船,正在以12海里∕小時的速度向西北方向航行,我漁政船立即沿北偏東60o方向航行,1.5小時后,在我領(lǐng)海區(qū)域的C處截獲可疑漁船.問我漁政船的航行路程是多少海里?(結(jié)果保留根號)21.(8分)如圖1,拋物線與x軸交于A、B兩點(點A在x軸的負半軸),與y軸交于點C.拋物線的對稱軸交拋物線于點D,交x軸于點E,點P是線段DE上一動點(點P不與DE兩端點重合),連接PC、PO.(1)求拋物線的解析式和對稱軸;(1)求∠DAO的度數(shù)和△PCO的面積;(3)在圖1中,連接PA,點Q是PA的中點.過點P作PF⊥AD于點F,連接QE、QF、EF得到圖1.試探究:是否存在點P,使得,若存在,請求點P的坐標(biāo);若不存在,請說明理由.22.(10分)用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.23.(10分)如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點O是邊AC的中點.(1)在圖1中,將△ABC繞點O逆時針旋轉(zhuǎn)n°得到△A1B1C1,使邊A1B1經(jīng)過點C.求n的值.(2)將圖1向右平移到圖2位置,在圖2中,連結(jié)AA1、AC1、CC1.求證:四邊形AA1CC1是矩形;(3)在圖3中,將△ABC繞點O順時針旋轉(zhuǎn)m°得到△A2B2C2,使邊A2B2經(jīng)過點A,連結(jié)AC2、A2C、CC2.①請你直接寫出m的值和四邊形AA2CC2的形狀;②若AB=,請直接寫出AA2的長.24.(10分)某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆?、“變小”或“不變”)25.(12分)如圖,在平行四邊形ABCD中,∠ABC的平分線BF分別與AC、AD交于點E、F.(1)求證:AB=AF;(2)當(dāng)AB=3,BC=4時,求的值.26.小明、小林是景山中學(xué)九年級的同班同學(xué),在六月份舉行的招生考試中,他倆都被亭湖高級中學(xué)錄取,并將被編入A、B、C三個班,他倆希望編班時分在不同班.(1)請你用畫樹狀圖法或列舉法,列出所有可能的結(jié)果;(2)求兩人不在同班的概率.

參考答案一、選擇題(每題4分,共48分)1、B【解析】過點A作AM⊥BC于點M,由題意可知當(dāng)點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關(guān)鍵.2、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故選:A.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,在解決旋轉(zhuǎn)問題時,要借助旋轉(zhuǎn)的性質(zhì)找到旋轉(zhuǎn)角和旋轉(zhuǎn)后對應(yīng)的量.3、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故選A.4、D【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【詳解】A、根據(jù)平行線截得的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形對應(yīng)邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.D、兩三角形的對應(yīng)邊不成比例,故兩三角形不相似,故本選項正確;故選:D.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關(guān)鍵.5、A【解析】計算出在半徑為R的圓中,內(nèi)接正方形和內(nèi)接正六邊形的邊長即可求出周長之間的關(guān)系;【詳解】設(shè)此圓的半徑為R,

則它的內(nèi)接正方形的邊長為,

它的內(nèi)接正六邊形的邊長為R,

內(nèi)接正方形和外切正六邊形的邊長比為R:R=:1.正方形與正六邊形的周長之比=:6=

故答案選:A;【點睛】考查了正多邊形和圓,解決圓的相關(guān)問題一定要結(jié)合圖形,掌握基本的圖形變換.找出內(nèi)接正方形與內(nèi)接正六邊形的邊長關(guān)系,是解決問題的關(guān)鍵.6、A【分析】連接OP,根據(jù)條件可判斷出PO⊥AB,即AP是定值,與x的大小無關(guān),所以是平行于x軸的線段.要注意CE的長度是小于1而大于0的.【詳解】連接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y(tǒng)=(0<x<1).故選A.【點睛】解決有關(guān)動點問題的函數(shù)圖象類習(xí)題時,關(guān)鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關(guān)系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運用.7、B【分析】過點C作CN⊥AB,可得四邊形CDME、ACDN是矩形,即可證明,從而得出AN,進而求得AB的長.【詳解】過點C作CN⊥AB,垂足為N,交EF于M點,

∴四邊形CDEM、BDCN是矩形,

∴,

∴,依題意知,EF∥AB,

∴,

∴,即:,

∴AN=20,

(米),

答:樓高為21.2米.

故選:B.【點睛】本題主要考查了相似三角形的應(yīng)用,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解即可,體現(xiàn)了轉(zhuǎn)化的思想.8、A【分析】連接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根據(jù)BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,進而得出EF的長.【詳解】解:如圖,連接BM.∵△AEM與△ADM關(guān)于AM所在的直線對稱,∴AE=AD,∠MAD=∠MAE.∵△ADM按照順時針方向繞點A旋轉(zhuǎn)90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=,∴EF=,故選:A.【點睛】本題考查正方形的性質(zhì)、三角形的判定和性質(zhì),關(guān)鍵在于做好輔助線,熟記性質(zhì).9、A【分析】根據(jù)概率是頻率(多個)的波動穩(wěn)定值,是對事件發(fā)生可能性大小的量的表現(xiàn)進行解答即可.【詳解】解:根據(jù)概率的意義可得“抽到一等獎的概率為為0.01”就是說抽100次可能抽到一等獎,也可能沒有抽到一等獎,抽一次也可能抽到一等獎,抽101次也可能沒有抽到一等獎.故選:A.【點睛】本題考查概率的意義,概率是對事件發(fā)生可能性大小的量的表現(xiàn).10、B【解析】根據(jù)AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.【詳解】解:∵AB=5,AC=3,BC=4,∴△ABC為直角三角形,由題意得,△AED的面積=△ABC的面積,由圖形可知,陰影部分的面積=△AED的面積+扇形ADB的面積﹣△ABC的面積,∴陰影部分的面積=扇形ADB的面積=,故選B.【點睛】考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì)和勾股定理的逆定理,根據(jù)圖形得到陰影部分的面積=扇形ADB的面積是解題的關(guān)鍵.11、B【解析】利用一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程,可求解.【詳解】解:A:,化簡后是:,不符合一元二次方程的定義,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有兩個未知數(shù),不符合一元二次方程的定義,所以不是一元二次方程;

D:,分母含有未知數(shù),是一元一次方程,所以不是一元二次方程;

故選:B.【點睛】本題考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應(yīng)注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.12、B【分析】連接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的長;由BD平分∠ABC,OB=OD可得OD與BC間的位置關(guān)系,根據(jù)平行線分線段成比例定理,得結(jié)論.【詳解】連接OD∵OD是⊙O的半徑,AC是⊙O的切線,點D是切點,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故選B.【點睛】本題考查了圓的切線的性質(zhì)、含30°角的直角三角形的性質(zhì)及平行線分線段成比例定理,解決本題亦可說明∠C=90°,利用∠A=30°,AB=6,先得AC的長,再求CD.遇切點連圓心得直角,是通常添加的輔助線.二、填空題(每題4分,共24分)13、1【解析】拋物線的解析式為y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;則:CD=CO+OD=4+16=1.【詳解】拋物線的解析式為y=x2-6x-16,

則D(0,-16)

令y=0,解得:x=-2或8,

函數(shù)的對稱軸x=-=3,即M(3,0),

則A(-2,0)、B(8,0),則AB=10,

圓的半徑為AB=5,

在Rt△COM中,

OM=5,OM=3,則:CO=4,

則:CD=CO+OD=4+16=1.故答案是:1.【點睛】考查的是拋物線與x軸的交點,涉及到圓的垂徑定理.14、3或1【分析】由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.15、1【解析】分析:直接利用已知比例式假設(shè)出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設(shè)a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質(zhì),正確表示出各數(shù)是解題關(guān)鍵.16、15π.【分析】根據(jù)圓錐的主視圖得到圓錐的底面圓的半徑為3,母線長為5,然后根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式求解.【詳解】解:根據(jù)題意得圓錐的底面圓的半徑為3,母線長為5,所以這個圓錐的側(cè)面積=×5×2π×3=15π.【點睛】本題考查圓錐側(cè)面積的計算,掌握公式,準(zhǔn)確計算是本題的解題關(guān)鍵.17、5≤d≤1.【分析】用a表示出b、c并求出a的取值范圍,再代入d整理成關(guān)于a的函數(shù)形式,然后根據(jù)二次函數(shù)的增減性求出答案即可.【詳解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非負數(shù),∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非負數(shù),∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴對稱軸為直線a=0,∴a=0時,最小值=5,a=2時,最大值=22+5=1,∴5≤d≤1.故答案為:5≤d≤1.【點睛】本題考查了二次函數(shù)的最值問題,用a表示出b、c并求出a的取值范圍是解題的關(guān)鍵,難點在于整理出d關(guān)于a的函數(shù)關(guān)系式.18、【分析】根據(jù)勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度數(shù),即可得出tan∠BAC的值.【詳解】在△DAC中,∠C=90°,由勾股定理得:DC,∴DCAD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°.故答案為:.【點睛】本題考查了含30度角的直角三角形,銳角三角函數(shù)的定義,能求出∠DAC的度數(shù)是解答本題的關(guān)鍵.三、解答題(共78分)19、(1)見解析(2)公平,理由見解析【分析】(1)用列表法將所有等可能的結(jié)果一一列舉出來即可;(2)求得兩人獲勝的概率,若相等則公平,否則不公平.【詳解】解:(1)根據(jù)題意列表得:(2)由列表得:共16種情況,其中奇數(shù)有8種,偶數(shù)有8種,∴和為偶數(shù)和和為奇數(shù)的概率均為,∴這個游戲公平.點評:本題考查了游戲公平性及列表與列樹形圖的知識,難度不大,是經(jīng)常出現(xiàn)的一個知識點.20、我漁政船的航行路程是海里.【分析】過C點作AB的垂線,垂足為D,構(gòu)建Rt△ACD,Rt△BCD,解這兩個直角三角形即可.【詳解】解:如圖:作CD⊥AB于點D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC?sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我漁政船的航行路程是海里.點睛:考查了解直角三角形的應(yīng)用(方向角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.21、(1);;(1)45°;;(3)存在,【分析】(1)把C點坐標(biāo)代入解出解析式,再根據(jù)對稱軸即可解出.(1)把A、D、E、C點坐標(biāo)求出后,因為AE=DE,且DE⊥AE,所以∠DAO=,P點y軸的距離等于OE,即可算出△POC的面積.(3)設(shè)出PE=m,根據(jù)勾股定理用m表示出PA,根據(jù)直角三角形斜邊中線是斜邊的一半可以證明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因為∠DAO=,再根據(jù)角的關(guān)系可以證明△FEQ是等腰直角三角形,再根據(jù),解出m即可.可以通過圓的性質(zhì),來判斷△FEQ是等腰直角三角形,再根據(jù)建立等式算出m即可.【詳解】解:(1)將C代入求得a=,∴拋物線的解析式為;由可求拋物線的對稱軸為直線(1)由拋物線可求一些點的坐標(biāo):∴AE=DE=3,又DE⊥AE∴△ADE是等腰直角三角形∴∠DAO=45°作PM⊥y軸于M,在對稱軸上的點P的橫坐標(biāo)為-1,∴PM=1,又OP=∴△OPC的面積為(3)解:存在點滿足題目條件.解法一:設(shè)點P的縱坐標(biāo)為m(0<m<3),則PE=m,∵點Q是PA的中點,∴QE、QF分別是Rt△PAE、Rt△PAF的公共斜邊PA上的中線∴QE=QF=AQ=PQ=∵QE=AQ,QF=AQ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ∴∠EQP=1∠EAQ,∠FQP=1∠FAQ∴∠EQF=1(∠EAQ+∠FAQ)=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面積為由得解得∵0<m<3∴∴在拋物線對稱軸上的點P的坐標(biāo)為解法二:設(shè)點P的縱坐標(biāo)為m(0<m<3),則PE=m,∵點Q是PA的中點,∴QE、QF分別是Rt△PAE、Rt△PAF的公共斜邊PA上的中線∴QE=QF=AQ=PQ=∴四邊形PEAF內(nèi)接于半徑為QE的⊙Q,∴∠EQF=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面積為由得解得∵0<m<3∴∴在拋物線對稱軸上的點P的坐標(biāo)為【點睛】本題考查了用待定系數(shù)法求一元二次函數(shù)解析式,對稱軸,直角三角形的性質(zhì),及一元二次函數(shù)與三角形綜合點存在性的問題,熟練運用相關(guān)知識點是解本題的關(guān)鍵.22、(1)-32;(2)a=1.【解析】分析:(1)原式利用題中的新定義化簡,計算即可得到結(jié)果;(2)已知等式利用題中的新定義化簡,即可求出a的值.詳解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.23、(1)n=60°;(2)見解析;(3)①m=120°,四邊形AA2CC2是矩形;②AA2=3.【分析】(1)利用等腰三角形的性質(zhì)求出∠COC1即可.(2)根據(jù)對角線相等的平行四邊形是矩形證明即可.(3)①求出∠COC2即可,根據(jù)矩形的判定證明即可解決問題.②解直角三角形求出A2C2,再求出AA2即可.【詳解】(1)解:如圖1中,由旋轉(zhuǎn)可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)證明:如圖2中,∵OC=OA,OA1=OC1,∴四邊形AA1CC1是平行四邊形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四邊形AA1CC1是矩形.(3)如圖3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四邊形AA2CC2是平行四邊形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四邊形AA2CC2是矩形.②∵AC=A2C2=AB?cos30°=4×=6,∴AA2=A2C2?cos30°=6×=3.【點睛】本題屬于四邊形綜合題,考查了旋轉(zhuǎn)變換,平行四邊形的判定和性質(zhì),矩形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.24、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論