甘肅省金昌市2023-2024學年中考五模數(shù)學試題含解析_第1頁
甘肅省金昌市2023-2024學年中考五模數(shù)學試題含解析_第2頁
甘肅省金昌市2023-2024學年中考五模數(shù)學試題含解析_第3頁
甘肅省金昌市2023-2024學年中考五模數(shù)學試題含解析_第4頁
甘肅省金昌市2023-2024學年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

甘肅省金昌市2023-2024學年中考五模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.2.觀察下列圖中所示的一系列圖形,它們是按一定規(guī)律排列的,依照此規(guī)律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60583.下面運算結果為的是A. B. C. D.4.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個5.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.16.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.7.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°8.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l9.近似數(shù)精確到()A.十分位 B.個位 C.十位 D.百位10.“遼寧號”航母是中國海軍航空母艦的首艦,標準排水量57000噸,滿載排水量67500噸,數(shù)據(jù)67500用科學記數(shù)法表示為A.675×102 B.67.5×102 C.6.75×104 D.6.75×105二、填空題(共7小題,每小題3分,滿分21分)11.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結果保留π)12.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數(shù)為_______.13.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.14.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.15.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現(xiàn)將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.16.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.17.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關系式為h=﹣2t2+mt+,若小球經(jīng)過秒落地,則小球在上拋的過程中,第____秒時離地面最高.三、解答題(共7小題,滿分69分)18.(10分)一位運動員推鉛球,鉛球運行時離地面的高度(米)是關于運行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標系.(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點的坐標.根據(jù)題意可知,該二次函數(shù)圖象上三個點的坐標分別是____________________________;(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.19.(5分)如圖,直角△ABC內(nèi)接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.20.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.21.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.22.(10分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.23.(12分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發(fā)現(xiàn)規(guī)律④教師讓學生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調(diào)查教學效果,八年級教師將上述教學方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調(diào)查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?24.(14分)某高校學生會在某天午餐后,隨機調(diào)查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.(1)這次被調(diào)查的同學共有名;(2)補全條形統(tǒng)計圖;(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù);(4)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.2、D【解析】

設第n個圖形有a個O(n為正整數(shù)),觀察圖形,根據(jù)各圖形中O的個數(shù)的變化可找出"a=1+3n(n為正整數(shù))",再代入a=2019即可得出結論【詳解】設第n個圖形有an個〇(n為正整數(shù)),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數(shù)),∴a2019=1+3×2019=1.故選:D.【點睛】此題考查規(guī)律型:圖形的變化,解題關鍵在于找到規(guī)律3、B【解析】

根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.4、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.5、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減小;x>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a6、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.7、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.8、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關鍵.9、C【解析】

根據(jù)近似數(shù)的精確度:近似數(shù)5.0×102精確到十位.故選C.考點:近似數(shù)和有效數(shù)字10、C【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】67500一共5位,從而67500=6.75×104,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、18π【解析】

根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.12、65°【解析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.13、1【解析】

根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應邊的比相等是解題的關鍵.14、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標特征;列表法與樹狀圖法.15、【解析】

用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結果數(shù),再找出抽到卡片上印有圖案都是軸對稱圖形的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結果數(shù),其中抽到卡片上印有圖案都是軸對稱圖形的結果數(shù)為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.也考查了軸對稱圖形.16、3<d<7【解析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.17、.【解析】

首先根據(jù)題意得出m的值,進而求出t=﹣的值即可求得答案.【詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關系式為h=﹣2t2+mt+,小球經(jīng)過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當t=﹣=﹣時,h最大,故答案為:.【點睛】本題考查了二次函數(shù)的應用,正確得出m的值是解題關鍵.三、解答題(共7小題,滿分69分)18、(0,),(4,3)【解析】試題分析:(Ⅰ)根據(jù)“剛出手時離地面高度為米、經(jīng)過4秒到達離地面3米的高度和經(jīng)過1秒落到地面”可得三點坐標;(Ⅱ)利用待定系數(shù)法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數(shù)圖象上的三個點的坐標分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設這個二次函數(shù)的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標代入,得:,解得:,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經(jīng)過的時間為1秒,所以自變量的取值范圍為0≤x≤1.19、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長PO交圓于G點,∵PF×PG=PC考點:切線的判定;切割線定理.20、(1)證明見解析;(2)4.8.【解析】

(1)連結OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識點,熟練運算這些知識是解決問題的關鍵.21、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).22、(1)證明見解析;(2)1.【解析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論