




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
LargeLanguageModel(LLM)ThreatsTaxonomy
ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis
/research/working-groups/ai-controls
?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subject
tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the
trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Reviewers
SiahBurke
PhilAlger
MarcoCapotondi
IlangoAllikuzhi
DanieleCatteddu
BakrAbdouh
KenHuang
VinayBansalVijayBolinaBrianBrinkley
Contributors
AnupamChatterjeeJasonClinton
MarinaBregkou
VidyaBalasubramanian
AlanCurranSandyDunnDavidGee
AvishayBar
ZackHamilton
MonicaChakrabortyAntonChuvakin
RicardoFerreiraAlessandroGrecoKrystalJackson
VicHargraveJerryHuang
RajeshKambleGianKapoorRicoKomenda
GianKapoor
VaniMittal
KushalKumar
AnkitaKumariYutaoMa
DannyManimboVishwasManralJesusLuna
MichaelRoza
LarsRuddigheit
JasonMorton
AmeyaNaik
GabrielNwajiakuMeghanaParwatePrabalPathak
RuchirPatwa
BrianPendletonKunalPradhan
DorSarig
Dr.MattRoldan
AmitSharma
RakeshSharmaKurtSeifried
CalebSima
EricTierling
JenniferToren
RobvanderVeerAshishVashishthaSounilYu
DennisXu
OmarSantos
Dr.JoshuaScarpino
NataliaSemenova
BhuvaneswariSelvaduraiJamillahShakoor
TalShapira
AkramSheriff
SrinivasTatipamula
Maria(MJ)SchwengerMahmoudZamani
RaphaelZimme
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ObjectivesandScope 5
RelationshipwiththeCSAAIControlFramework 6
1.LargeLanguageModelAssets 7
1.1.DataAssets 7
1.2.LLM-OpsCloudEnvironment 9
1.3.Model 10
1.4.OrchestratedServices 11
1.5.AIApplications 13
2.LLM-ServiceLifecycle 15
2.1Preparation 16
2.2Development 17
2.3Evaluation/Validation 18
2.4Deployment 20
2.5Delivery 22
2.6ServiceRetirement 24
3.LLM-ServiceImpactCategories 26
4.LLMServiceThreatCategories 26
4.1.ModelManipulation 26
4.2.DataPoisoning 27
4.3.SensitiveDataDisclosure 27
4.4.ModelTheft 27
4.5.ModelFailure/Malfunctioning 27
4.6.InsecureSupplyChain 27
4.7.InsecureApps/Plugins 27
4.8.DenialofService(DoS) 28
4.9.LossofGovernance/Compliance 28
5.References/Sources 29
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
ObjectivesandScope
ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls
FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon
taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI
SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.
Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):
●LLMAssets
●LLM-ServiceLifecycle
●LLM-ServiceImpactCategories
●LLM-ServiceThreatCategories
Figure1:CSALLMThreatTaxonomy
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a
strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.
Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand
TerminologyofAttacksandMitigations”[Barrettetal.,2023].
Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,
developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga
commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.
RelationshipwiththeCSAAIControlFramework
TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI
technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.
Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.
PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween
AISafetyandAI
Security
.
Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements
governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.
1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
1.LargeLanguageModelAssets
ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM
systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this
sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,
Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.
Figure2:LLMAssets
1.1.DataAssets
InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data
assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Datausedfortraining,benchmarking,testing,andvalidation
●Datausedforfine-tunetraining
●DatausedforRetrieval-AugmentedGeneration(RAG)
●Datacardsthatdefinethemetadataofthedatainuse
●Inputdata
●Usersessiondata
●Modeloutputdata
●Modelparameters(weights)
●Modelhyperparameters
●LogdatafromLLMsystems
Thefollowingarethedefinitionsoftheseassets:
1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis
treatedandmanagedindividually.
2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.
3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By
retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious
sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.
4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance
regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.
5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries
aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.
6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.
7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.
9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including
parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.
10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,
includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.
1.2.LLM-OpsCloudEnvironment
TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:
●Cloudrunningthetrainingenvironment
●Cloudrunningthemodelinferencepoint
●CloudrunningtheAIapplications
●Hybridandmulti-cloudinfrastructure
●Securityofthedeploymentenvironment
●Continuousmonitoring
●Cloudtohosttrainingdata(Storage)
ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:
1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.
2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated
infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.
3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI
applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.
4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.
5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant
surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.
6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.
1.3.Model
Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.
Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor
closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.
Wedefinethefollowingmodelassetsinthissubsection:
●FoundationModel
●Fine-TunedModel
●OpenSourcevs.ClosedSourceModels
●Domain-SpecificModels
●Modelcards
1.FoundationModel:
TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation
models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto
specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,
“Frontier
Model”
canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.
2.Fine-TunedModel:
DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto
catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe
foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
3.Open-Sourcevs.Closed-SourceModels:
Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder
open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.
Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.
Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.
4.Domain-SpecificModels:
Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.
5.Modelcards:
Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext
metadatachanges.[CSA,2024]
Moredetailsofmodelcardscanbefound,forexample,atthe
HuggingFace
platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.
1.4.OrchestratedServices
TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.
ThefollowingisthelistofOrchestratedServicesAssets:
●CachingServices
●SecurityGateways(LLMGateways)
●DeploymentServices
●MonitoringServices
●OptimizationServices
●Plug-insforSecurity
●Plug-insforCustomizationandIntegration
●LLMGeneralAgents
2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe
AIRiskandTechnology
workinggroup
.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.
1.CachingServices:
CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring
frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.
2.SecurityGateways(LLMGateways):
SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas
intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),
PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.
3.DeploymentServices:
DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment
processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.
4.MonitoringServices:
MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These
servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely
interventiontoupholdtheoptimaloperationofLLMs.
5.OptimizationServices:
OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference
strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.
6.Plug-insforSecurity:
Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.
7.Plug-insforCustomizationandIntegration:
Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless
integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring
LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
8.LLMGeneralAgents:
LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas
●planning,
●reflection,
●functioncalling,
●monitoring,
●dataprocessing,
●explainability,
●optimization,
●scaling,andcollaboration,
●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.
1.5.AIApplications
AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness
operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto
governtheirdevelopment,deployment,andusage.
AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse
businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,
sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface
throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.
AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.
AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible
developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.
Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework
shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.
AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor
governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including
modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof
ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto
conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland
datacards.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
2.LLM-ServiceLifecycle
TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,
reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand
planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand
standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.
DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom
organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.
Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.
●Preparation:
。Datacollection
。Datacuration
。Datastorage
。Resourceprovisioning。Teamandexpertise
●Development:
。Design。Training
。Keyconsiderationsduringdevelopment。Guardrails
●Evaluation/Validation:
。Evaluation
。Validation/RedTeaming。Re-evaluation
。Keyconsiderationsduringevaluation/validation
●Deployment:
。Orchestration
。AIServicessupplychain。AIapplications
●Delivery:
。Operations。Maintenance
。Continuousmonitoring。Continuousimprovement
?Copyright2024,CloudS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個人征信基礎考試:征信報告分析與應用實務試題集錦含答案
- 2025年A股投資策略分析報告:消費定海神針
- 海洋生態(tài)養(yǎng)殖富農策略
- 老年用藥安全課件
- 老年護理專科課件
- 老師這個職業(yè)
- 餐飲廚師職業(yè)晉升與薪酬調整合同
- 茶館與茶葉種植技術研究院合作協(xié)議
- 老妖老師消防課件筆記
- 車輛購置稅減免及退稅合同協(xié)議
- 陪護公司管理制度規(guī)定
- 廣東省深圳市龍崗區(qū)2023-2024六年級下學期期中科學試卷(含答案)
- 碳盤查協(xié)議合同
- 退役軍人保密教育
- 太極拳理論考試復習題
- 《水利水電工程白蟻實時自動化監(jiān)測預警系統(tǒng)技術規(guī)范》
- 2024年湖北省中考英語試卷
- GB/T 15316-2024節(jié)能監(jiān)測技術通則
- 幼兒園食堂舉一反三自查報告
- 光伏分布式項目日報模板
- 蘇科版九年級物理上冊一課一測-11.1杠桿
評論
0/150
提交評論