版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
LargeLanguageModel(LLM)ThreatsTaxonomy
ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis
/research/working-groups/ai-controls
?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subject
tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the
trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Reviewers
SiahBurke
PhilAlger
MarcoCapotondi
IlangoAllikuzhi
DanieleCatteddu
BakrAbdouh
KenHuang
VinayBansalVijayBolinaBrianBrinkley
Contributors
AnupamChatterjeeJasonClinton
MarinaBregkou
VidyaBalasubramanian
AlanCurranSandyDunnDavidGee
AvishayBar
ZackHamilton
MonicaChakrabortyAntonChuvakin
RicardoFerreiraAlessandroGrecoKrystalJackson
VicHargraveJerryHuang
RajeshKambleGianKapoorRicoKomenda
GianKapoor
VaniMittal
KushalKumar
AnkitaKumariYutaoMa
DannyManimboVishwasManralJesusLuna
MichaelRoza
LarsRuddigheit
JasonMorton
AmeyaNaik
GabrielNwajiakuMeghanaParwatePrabalPathak
RuchirPatwa
BrianPendletonKunalPradhan
DorSarig
Dr.MattRoldan
AmitSharma
RakeshSharmaKurtSeifried
CalebSima
EricTierling
JenniferToren
RobvanderVeerAshishVashishthaSounilYu
DennisXu
OmarSantos
Dr.JoshuaScarpino
NataliaSemenova
BhuvaneswariSelvaduraiJamillahShakoor
TalShapira
AkramSheriff
SrinivasTatipamula
Maria(MJ)SchwengerMahmoudZamani
RaphaelZimme
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ObjectivesandScope 5
RelationshipwiththeCSAAIControlFramework 6
1.LargeLanguageModelAssets 7
1.1.DataAssets 7
1.2.LLM-OpsCloudEnvironment 9
1.3.Model 10
1.4.OrchestratedServices 11
1.5.AIApplications 13
2.LLM-ServiceLifecycle 15
2.1Preparation 16
2.2Development 17
2.3Evaluation/Validation 18
2.4Deployment 20
2.5Delivery 22
2.6ServiceRetirement 24
3.LLM-ServiceImpactCategories 26
4.LLMServiceThreatCategories 26
4.1.ModelManipulation 26
4.2.DataPoisoning 27
4.3.SensitiveDataDisclosure 27
4.4.ModelTheft 27
4.5.ModelFailure/Malfunctioning 27
4.6.InsecureSupplyChain 27
4.7.InsecureApps/Plugins 27
4.8.DenialofService(DoS) 28
4.9.LossofGovernance/Compliance 28
5.References/Sources 29
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
ObjectivesandScope
ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls
FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon
taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI
SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.
Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):
●LLMAssets
●LLM-ServiceLifecycle
●LLM-ServiceImpactCategories
●LLM-ServiceThreatCategories
Figure1:CSALLMThreatTaxonomy
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a
strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.
Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand
TerminologyofAttacksandMitigations”[Barrettetal.,2023].
Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,
developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga
commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.
RelationshipwiththeCSAAIControlFramework
TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI
technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.
Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.
PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween
AISafetyandAI
Security
.
Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements
governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.
1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
1.LargeLanguageModelAssets
ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM
systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this
sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,
Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.
Figure2:LLMAssets
1.1.DataAssets
InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data
assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Datausedfortraining,benchmarking,testing,andvalidation
●Datausedforfine-tunetraining
●DatausedforRetrieval-AugmentedGeneration(RAG)
●Datacardsthatdefinethemetadataofthedatainuse
●Inputdata
●Usersessiondata
●Modeloutputdata
●Modelparameters(weights)
●Modelhyperparameters
●LogdatafromLLMsystems
Thefollowingarethedefinitionsoftheseassets:
1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis
treatedandmanagedindividually.
2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.
3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By
retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious
sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.
4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance
regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.
5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries
aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.
6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.
7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.
9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including
parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.
10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,
includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.
1.2.LLM-OpsCloudEnvironment
TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:
●Cloudrunningthetrainingenvironment
●Cloudrunningthemodelinferencepoint
●CloudrunningtheAIapplications
●Hybridandmulti-cloudinfrastructure
●Securityofthedeploymentenvironment
●Continuousmonitoring
●Cloudtohosttrainingdata(Storage)
ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:
1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.
2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated
infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.
3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI
applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.
4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.
5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant
surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.
6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.
1.3.Model
Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.
Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor
closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.
Wedefinethefollowingmodelassetsinthissubsection:
●FoundationModel
●Fine-TunedModel
●OpenSourcevs.ClosedSourceModels
●Domain-SpecificModels
●Modelcards
1.FoundationModel:
TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation
models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto
specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,
“Frontier
Model”
canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.
2.Fine-TunedModel:
DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto
catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe
foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
3.Open-Sourcevs.Closed-SourceModels:
Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder
open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.
Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.
Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.
4.Domain-SpecificModels:
Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.
5.Modelcards:
Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext
metadatachanges.[CSA,2024]
Moredetailsofmodelcardscanbefound,forexample,atthe
HuggingFace
platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.
1.4.OrchestratedServices
TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.
ThefollowingisthelistofOrchestratedServicesAssets:
●CachingServices
●SecurityGateways(LLMGateways)
●DeploymentServices
●MonitoringServices
●OptimizationServices
●Plug-insforSecurity
●Plug-insforCustomizationandIntegration
●LLMGeneralAgents
2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe
AIRiskandTechnology
workinggroup
.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.
1.CachingServices:
CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring
frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.
2.SecurityGateways(LLMGateways):
SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas
intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),
PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.
3.DeploymentServices:
DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment
processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.
4.MonitoringServices:
MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These
servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely
interventiontoupholdtheoptimaloperationofLLMs.
5.OptimizationServices:
OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference
strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.
6.Plug-insforSecurity:
Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.
7.Plug-insforCustomizationandIntegration:
Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless
integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring
LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
8.LLMGeneralAgents:
LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas
●planning,
●reflection,
●functioncalling,
●monitoring,
●dataprocessing,
●explainability,
●optimization,
●scaling,andcollaboration,
●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.
1.5.AIApplications
AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness
operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto
governtheirdevelopment,deployment,andusage.
AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse
businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,
sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface
throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.
AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.
AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible
developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.
Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework
shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.
AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor
governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including
modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof
ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto
conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland
datacards.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
2.LLM-ServiceLifecycle
TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,
reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand
planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand
standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.
DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom
organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.
Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.
●Preparation:
。Datacollection
。Datacuration
。Datastorage
。Resourceprovisioning。Teamandexpertise
●Development:
。Design。Training
。Keyconsiderationsduringdevelopment。Guardrails
●Evaluation/Validation:
。Evaluation
。Validation/RedTeaming。Re-evaluation
。Keyconsiderationsduringevaluation/validation
●Deployment:
。Orchestration
。AIServicessupplychain。AIapplications
●Delivery:
。Operations。Maintenance
。Continuousmonitoring。Continuousimprovement
?Copyright2024,CloudS
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蜜蜂身體形態(tài)特征與采蜜
- 小型礦井水及生活污水處理方案
- 高一化學(xué)教案:第一單元化學(xué)是認(rèn)識(shí)和創(chuàng)造物質(zhì)的科學(xué)
- 2024高中物理第一章電磁感應(yīng)章末質(zhì)量評(píng)估含解析粵教版選修3-2
- 2024高中語(yǔ)文第1單元論語(yǔ)蚜第4課己所不欲勿施于人練習(xí)含解析新人教版選修先秦諸子蚜
- 2024高中語(yǔ)文第五課言之有“理”第3節(jié)有話(huà)“好好說(shuō)”-修改蹭練習(xí)含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高中語(yǔ)文綜合評(píng)估含解析新人教版必修5
- 2024高考?xì)v史一輪復(fù)習(xí)方案專(zhuān)題十八20世紀(jì)的戰(zhàn)爭(zhēng)與和平第39講第一次世界大戰(zhàn)及凡爾賽-華盛頓體系下的世界教學(xué)案+練習(xí)人民版
- 小學(xué)民主監(jiān)督制度
- 二零二五年綠化垃圾處理與運(yùn)輸合作協(xié)議3篇
- 《榜樣9》觀后感心得體會(huì)四
- 《住院患者身體約束的護(hù)理》團(tuán)體標(biāo)準(zhǔn)解讀課件
- 酒店一線(xiàn)員工績(jī)效考核指標(biāo)體系優(yōu)化研究
- 企業(yè)投融資管理流程(64P)
- Harris-髖關(guān)節(jié)功能評(píng)分標(biāo)準(zhǔn)(共1頁(yè))
- 養(yǎng)老金核定表
- 成都市優(yōu)質(zhì)結(jié)構(gòu)工程申報(bào)指南
- 【納棺夫日記】
- 《鐵路貨車(chē)運(yùn)用維修規(guī)程》2018年10月
- ISO9001-2015中文版(完整)
- 水利工程竣工驗(yàn)收?qǐng)?bào)告表格(共5頁(yè))
評(píng)論
0/150
提交評(píng)論