版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
StaticsStaticsofdeformablebodyChapter13
EnergyMethod
13.1Strainenergyofbars13.2Mohrtheorem13.3DiagrammultiplicationmethodforMohrintegration13.4Castigliano'stheoremContentsU=W(13-1)Principleofstrainenergymethod:theworkdonebytheexternalforceatthecorrespondingdisplacementisnumericallyequaltothestrainenergystoredinthedeformedbody.Thestrainenergymethod:Themethodsofsolvingproblemsusingtheoremsandprinciplesrelatedtotheconceptofstrainenergy.External:workWdonebyexternalforceInternal:potentialenergydeformationenergyU13.1Strainenergyofbars1.
StrainenergyforbasicdeformationThecalculationofthestrainenergyunderseveralbasicdeformationsisnowexamined.(1)AxialtensionorcompressionForaxialtensionorcompressionofstraightrodsofequalcross-section,theexternalforceislinearlyrelatedtotheaxialdeformationofthebarwithintheelasticrange.ABoFl
D
(a)FlD
l(b)FThestrainenergyofthebarcanthusbewrittenas
a.Iftheinternalforcevariescontinuouslyalongtheaxisofthebar,i.e.FN=FN(x),Thestrainenergyofthebarcanbe
b.Iftheinternalforcesvaryinsteps,
wheremisthenumberoftensionandcompressionbars.Thestrainenergy(strainenergydensityorspecificenergy)perunitvolumeofatension(compression)baris
ABoM
j(2)Torsionofcircularshafts(a)lMjjMWorkdonebytorque:(b)
AccordingtoequationU=W,thisworkisequaltothetorsionalstrainenergystoredinthecircularshaft.Whenthecircularshaftissubjectedtoexternalforcecouplesatbothendsonly,wehaveThus,thetorsionalstrainenergyofthecircularshaftcanbewrittenasDiscussion:Iftheinternalforcecouplemomentvariescontinuouslyalongtheaxisofthecircularshaft,i.e.Mn=Mn(x),thestrainenergyforthewholecircularshaftisIftheinternalcouplemomentvariesinstepsalongtheaxis,wehave
Thestrainenergyperunitvolumeofthecircularshaft,i.e.thestrainenergydensityinthepureshearstate,is
(3)PlanebendingPurebendingofstraightcantileverbeamsofequalsection.Astheconcentratedcouplemomentgraduallyincreasesfromzerotoitsfinalvaluem,theangleofrotationatthefreeendofthecantileverbeamalsograduallyincreasesfromzerotoitsfinalvalueθ(Fig.a).(b)ABoql(a)
workdonebyMcanbeexpressedintermsoftheareaofthetriangleOAB,i.e
Discussion:strainenergyofthepurelybendingbeamstrainenergyofthestraightbeamintransverseforcebending
Intherangeoflinearelasticityandunderstaticload,thestrainenergyofabarcanbeexpresseduniformlyas
F:generalizedforceδ:generalizeddisplacementF:force
δ:displacement;F:forcecouplemoment
δ:angular-displacement2.CharacteristicsofelasticstrainenergyThedeformationenergiescannotsimplybesuperimposedingeneral.Note:If
M1andM2denotethebendingmomentscausedbythetwoexternalforce(F1F2)actingalonerespectively,whentheyacttogether,thebendingmomentsofthebeamshouldbeM1+M2.Thestrainenergyofthebeamis(2)theelasticstrainenergyisindependentoftheorderofloadinganddependsentirelyonthefinalvalueoftheloadanddisplacement.(3)whenthecross-sectionalchangesorinternalforcesarerepresentedbydifferentfunctions,thedeformationenergyshouldbecalculatedinseparatesections.(4)therodisalinearelastomersatisfyingHooke'slaw,forthenon-linearelastomer,thedeformationenergywillbecome3、TheClapeyron’stheorem-------UniversalexpressionsfordeformationenergyδidenotesthegeneralizeddisplacementofthegeneralizedforceFiatthepointofactionalongitsdirectionofaction.δi
canbewrittenas
whereδi1representsthegeneralizeddisplacementatthepointofFialongitsactiondirection.ItiscausedbythegeneralizedforceF1.Therestaresimilar.β1?βm
areconstantsrelatedtothestructure.1F2F1d2dmFmd…..ThesumoftheworkdonebyeachloadisnumericallyequaltothestrainenergyofthestructureThisconclusioniscalledClapeyron’stheorem.Itcanbedescribedasthesumofthedeformationenergyofalinearelastomerequaltoone-halfoftheproductofeachexternalforceanditscorrespondingdisplacement.4.Strainenergyforcombineddeformation
Usingthegeneralexpressionforstrainenergy,thestrainenergyofabarsubjectedtothecombinedactionofbending,torsionandaxialtensioncanbeobtained.
Nowinterceptamicro-segmentoflengthdxinthebar,iftheaxialforce,bendingmomentandtorqueinthecrosssectionareFN(x),M(x)andMn(x)(forthemicro-sectiondx,FN(x),M(x)andMn(x)shouldberegardedasexternalforces).Therelativeaxialdisplacement,rotationangleandtorsionanglebetweenthetwoendcrosssectionsared(Δl),dθanddφ,respectivelySincethedeformationscausedbyeachofFN(x),M(x)andMn(x)areindependentofeachother,thestrainenergywithinthemicro-segmentdxshouldbeThen,thedeformationenergyoftheentirecombineddeformedbarcanbeobtainedbyintegratingtheaboveequation.Example1:TrytofindthestrainenergyofthesquaretrussstructureandfindtherelativedisplacementsatpointsAandC.ItisknownthateachbarhasthesametensileandcompressiverigidityEA.solution:Axialforces:Deformationenergy:BACDFFlWorkdonebyexternalforceFromU=W,
weobtainThen,wecangetBACDFFlExample1:TrytofindthestrainenergyofthesquaretrussstructureandfindtherelativedisplacementsatpointsAandC.ItisknownthateachbarhasthesametensileandcompressiverigidityEA.Example2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.SolutionSectionAB:SectionBC:Deformationenergy:FBACaDeformationenergy:VerticaldisplacementofsectionA:Ifa=landcrosssectiondiameterisd(l=10d),thenExample2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.FBACathen:Thesecondterminbracketsislessthan0.05%.So,theeffectofaxialforcescangenerallybeneglectedwhensolvingfordeformationsordisplacementsinbendingresistantbarstructures.Example2:Rightfigureshowsaplanerigidframe.ThebendingrigidityandtensilerigidityoftheframeareknowntobeEIandEA,respectively.trytofindtheverticaldisplacementδAofendA.FBACaExample3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.solution:Itcanbeseenfromfigure(b)thatthetorsionandbendingonthecrosssectionm-nare
AFROjdjFAmmndj(b)Deformationenergy:Deformationenergyofthewholerod:mndj(b)Example3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.LettheverticaldisplacementofAbe.Duringthedeformation,theworkdonebytheexternalforceisnumericallyequaltothestrainenergyofthecurvedbar,i.e.Therefore:mndj(b)Example3:Aplanecurvedbarwithasemi-circularaxisisshown.AconcentratedforceperpendiculartotheplaneinwhichtheaxisislocatedisactingatthefreeendA.TrytofindtheverticaldisplacementofsectionA.13.2Mohr’stheoremMohr’stheoremisaneffectivetoolfordeterminingdisplacementatanypointinanydirection.TheconceptandpropertiesofstrainenergyarenowusedtoderiveMohrtheorem,usingabeamasanexample.SupposethebeamisbentanddeformedundertheactionofanexternalforceF1,F2......,asshowninFigure(a).WecalculatethedeflectionδatanypointConthebeamundertheactionoftheaboveexternalforce.C1F2FABd(a)thestrainenergycausedbyM(x)canbefound….oneunitforceF0=1isappliedatpointCinthedirectionofdeflectionbendingmoment:thedeformationstoredinthebeam:
AddF1,F2
......backtothebeam.TheunitforceF0completestheworkwiththevalueF0δagain.InthecaseofFigure(c),thestrainenergyofthebeamcanbe(b)BAC0F0F2F1FCBAd(c)….SincethebendingmomentunderthejointactionofF0andF1,F2......isM(x)+M0(x),thestrainenergyofthebeamcanalsobeexpressedastwoequationsareequal,so:
ConsideringF0=1,weget:
ThisisMohrtheoremalsoknownastheMohrintegration.Forsmallcurvaturecurvedbar,theMohr'sintegralformulaforstraightbeamcanbeextendedtoobtaintheMohrintegralforthebendingdeformationofthecurvedbar
Theformulaforcalculatingthedisplacementofthenodeofthetrussstructure:
TheMohrformulaforcalculatingthedisplacementofacombineddeformedstructureis:PointstonotewhenusingMoore'stheorem:④ThecoordinatesystemofM0(x)andM(x)mustbethesame,andthecoordinatesystemofeachsegmentoftherodcanbeestablishedfreely.⑤TheMohrintegralmustcovertheentirestructure.②M0——Byremovingtheactiveforce,atthepointofthegeneralizeddisplacementwherethecalculationneedstobedone,alongtherequesteddirectionofthegeneralizeddisplacement,theinternalforcegeneratedbythestructurewhenthegeneralizedunitforceisadded.①M(fèi)(x):Internalforceofthestructureundertheoriginalload.③Theproductofthegeneralizedunitforceaddedandthegeneralizeddisplacementmusthavethesamedimensionaswork.ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohrtheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)solution
Bendingmomentequation:Thebendingmomentcausedbyunitforceis:AccordingtoMohrtheorem,thedeflectionofsectionAis:
ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohr'stheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)x1(c)Thebendingmomentcausedbytheunitcoupleis:FromtheMohrtheorem,ExampleThecantileverbeamsubjectedtouniformloadisshown.IfEIisaconstant,trytouseMohrtheoremtocalculatethedeflectionanddeflectionangleofsectionAatthefreeend.xlqA(a)x1(b)ExampleAsimpletrussstructureshownissubjectedtoforces.Letthetensile(compressive)rigidityEAofeachbarbethesame.TrytofindtherelativedisplacementbetweenthepointsBandD.31452llF2FDACB31452llDA11CBExampleAsteelframeofcircularsectionissubjectedtoforcesasshowninFigure(a).ThetorsionalrigidityofthewholeframeisGIpandEI,respectively.Iftheeffectofshearondeformationisexcluded,trytofindthedisplacementδCofsectionCalongtheverticaldirection.ABlq(a)ClThepositiveandnegativeinternalforcesineachsegmentcanstillfollowthesignregulationsfortheinternalforcesinthebarundervariousbasicdeformations.SectionBC:
SectionAB:
1x2x2x1x(b)ABC1ABl(a)ClqByusingcorrespondingformula,thenumericaldisplacementofsectionCcanbeobtainedasBC:AC:ExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)Solution:
bendingmomentcausedbyload:BendingmomentunderaconcentratedforceatpointA:A1(b)TheverticaldisplacementofpointAisExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)A1(b)A(c)AddaunitforcecoupleatpointA,wecanget:ExampleThesmallcurvaturebarisshown.TrytofindtheverticaldisplacementandtheangleofrotationofthefreeendA.TheEIisaconstant.FAdsdjjR(a)A1(b)13.3DiagrammultiplicationmethodforMohrintegrationForthebendingdeformationofstraightbeamswithequalsection,
(a)M0(x)istheinternalforcecausedbytheunitload.Itmustconsistofastraightlineorabrokenline.
LettheM(x)andM0(x)diagramstobethediagramsofmomentscausedbytheloadsandunitforce,respectively.AsectionofthegraphofM0
(x)isobliquestraightline.
Correspondingequation:CxxlSubstituteaboveequationintoequation(a),weget
(b)
M(x)dxxxCCx0CMx0()Mx()0Mxlsecondterm:ωistheareaoftheM(x)graphFirstterm:centroidM(x)()Mx()MxdxxcxCx0CMx0()MxlwhereisverticalcoordinateoftheM0(x)diagramcorrespondingtothecenterCoftheM(x)diagram.ThismethodofreducingtheMohrintegrationoperationtoanalgebraicoperationbetweengraphsisknownasthediagrammultiplicationmethod.(3)Thismethodcanbeusedtofindthedeformationordisplacementofallkindofstraightbarwithequalsection.note:(1)ωandMC0arebothgenerationalquantitieswiththesamepositiveandnegativesignsasM(x)andM0(x).(2)IfM(x)isasegmentedsmoothcurve,orifM0(x)isaline,thegraphicalmultiplicationformulashouldbeusedforthesegments,andthenfindthealgebraicsum.abh3l+a3l+blCh
n+2(n+1)llCn+2lh4
3llC4lh8
5llC8
3lToppointtriangle:
Quadraticparabola:Quadraticparabola:Nthdegreeparabola:AqBCMlaExampleAnexternallyoverhangingbeamshownisloaded.IfEIisaconstant,trytofindthedeflectionatthefreeendC.
ExampleAnexternallyoverhangingbeamshownisloaded.IfEIisaconstant,trytofindthedeflectionatthefreeendC.
28ql11Cw22wCM.C33w..AqBCMlaTheparabolicpartwithareaω1iscausedbytheuniformload.Thefoldedpartwithareasω2andω3iscausedbytheconcentratedforcecouple.
28ql11Cw22wCM..C33w.AqBCMlaThediagramM0(x)causedbytheunitforceisgiven.ThevalueofMC0correspondingtothecentroidsofthethreepartsoftheM(x)diagramcanbefoundusingtheproportionalrelationshipbetweenthelinesegments.thedeflectionoftheCsectioncanbefoundasABC101M02M03Ma28ql11Cw22wCM..C33w.ExampleAsteelframeofconstantEIisshown,withbeamBCsubjectedtoauniformloadq.Iftheeffectofshearandaxialforcesondeformationisnotconsidered,trytofindtheverticaldisplacementofsectionA.BCAq2a2asolutionFirstdrawthebendingmomentdiagramofthesteelframeunderloadasshowninFigureblew.22qa22qaBCAq2a2aTocalculatetheverticaldisplacementofsectionA,aunitforceintheverticaldirectionisappliedonsectionAandthenthecorrespondingM0(x)diagramisdrawnasfollows.CBA12a2a02M01MBCAq2a2a22qa22qa2w2C.1C1w.Accordingtothecorrespondingformulain,theareaofthemomentdiagramofthetwobarsABandBCcanbefoundasBCAq2a2a22qa22qa1C1w.2w2C.
Mc0correspondingtothecentroidsofω1andω2inFigure(d)is2a2a02M01M22qa22qa1C1w.2w2C.fromtheequationtheverticaldisplacementofsectionAcanbefound.2a2a02M01M22qa22qa2w2C.1C1w.13.4Castigliano'stheorem1.Castigliano'stheoremLetthefreeendAofastraightcantileverbeamwithEIbesubjectedtoaconcentratedforceFA.ItisnotdifficulttofindthestrainenergystoredinthecantileverbeamThestrainenergyinthebeamisnumericallyequaltotheworkoftheexternalforceW,i.e.FAlxABThedeflectionofthefreeendofthecantileverbeamis
IfwetakethepartialderivativeofthestrainenergyUofthebeamwithrespecttotheconcentratedforceFatsectionA,wehaveThisisexactlyequaltothefreeenddeflection.Therefore,ThepartialderivativeofthestrainenergywithrespecttoFisequaltothedisplacementofthepointofFalongtheforcedirection,whichisknownasCastigliano'stheorem.TheCartesiantheoremcanbedescribedas:thepartialderivativeofthedeformationenergyoftheelasticbodytoanyloadisequaltothedisplacementoftheloadapplicationpointalongtheloadapplicationdirection.
Thebeamisnowusedtoprovethistheorem.LetasetofstaticloadsF1
、F2···actingonabeam.Thedisplacementsinresponsetotheseloadsareδ1
、δ2···.Duringthedeformationprocess,theworkdonebytheaboveloadisequaltothestrainenergystoredinthebeam.ThestrainenergyUisafunctionoftheloadF1、F2···andcanbeexpressedas(a)1F2FnF1d2dnd(a)…..IfFnisgivenanincrementdFn,thestrainenergyUwillalsohaveanincrement.Theelasticstrainenergyofthebeamcanbewrittenas
(b)1F2F…..Fn+
dFnChangetheloadingorderbyfirstaddingdFntothebeamandthenactingF1、F2···.WhendFnisfirstadded,itcausesadisplacementdδnatitspointalongthesamedirection.Thestrainenergyinthebeamatthistimeshouldbe1/2dFndδn.ndFndd1F2F1d2dnd…..dFn+FnnddBecausethestrainenergycausedbyF1
、F2···isstillU,thestrainenergystoredinthebeamshouldbe
(c)1F2F1d2dnd…..dFn+FnnddSincethestrainenergywithinthelinearelasticbodyisindependentoftheloadingorder,thestrainenergycausedbythetwodifferentloadingordersshouldbeequal,i.e.Neglectingthesecondordermicro-quantity,weget
ThisispreciselytheexpressionofCastigliano'stheoremofequation.TheCastigliano'stheoremonlyappliestolinearelasticstructures.2.SpecialformsofCastigliano'stheorem(1)Truss
Ifthewholetrussconsistsofmbars,thestrainenergyofthewholestructurecanbecalculatedbyequation(13-5),i.e.AccordingtotheCastigliano'stheoremthereis
(2)Straightbeam
Forstraightbeamswhereplanebendingoccurs,thestrainenergycanbecalculatedusingequation(13-14),i.e.ApplyingCastigliano'stheorem,wegetIntheaboveequation,onlythebendingmomentM(x)isrelatedtotheloadFn.TheintegralvariablexandFnarenotrelated.Sowecanfirsttakethepartialderivativeandthenintegrateit.(3)PlanecurvedbarsThestressdistributionofsmallcurvaturebarissimilartothatofastraightbeam.ThebendingstrainenergycanbewrittenasApplyingCastigliano'stheorem,weget
(4)Combineddeformationofbars
Forbarssubjectedtothecombinedactionoftension(compression),bendingandtorsion,thestrainenergycanbewrittenfromequation(13-19),i.e.ApplyingCastigliano'stheorem,weget
Solution
SectionAC:SectionBC:
Example
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBACExample
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBACdeflectionatthemid-pointC:Example
FindthedeflectionangleofsectionAandthedeflectionatthemid-pointC.FBACFBAC3.SpecialtreatmentofCastigliano'stheoremIfweusetheCastigliano'stheoremtocalculatethegeneralizeddisplacement,theremustbethegeneralizedexternalforcecorrespondingtotheformanddirectionoftherequestedgeneralizeddisplacement.Themethodofadditionalforces:firstly,appendageneralizedforcecorrespondingtotherequestedgeneralizeddisplacement,andthenCastigliano'stheoremisapplied
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀行前臺工作計(jì)劃
- 誠信服務(wù)行業(yè)人才培訓(xùn)實(shí)踐
- 品牌改造與消費(fèi)者認(rèn)知的匹配計(jì)劃
- 燈飾店銷售員工作總結(jié)
- 快餐行業(yè)話務(wù)員工作總結(jié)
- 禮品工藝行業(yè)安全生產(chǎn)工作總結(jié)
- 訴訟案件管理實(shí)踐總結(jié)
- Unit6 In a nature park PA Let's talk(說課稿)-2024-2025學(xué)年人教PEP版英語五年級上冊
- Unit 7 Section A(1a~Pronunciation) 說課稿- 2024-2025學(xué)年人教版(2024年)英語七年級上冊
- Unit 2 How often do you exercise Section B 2a-2e(說課稿)-2024-2025學(xué)年人家新目標(biāo)八年級英語上冊
- 梅毒診療指南(2014版)
- GA 172-2014金屬手銬
- 醫(yī)學(xué)醫(yī)學(xué)文獻(xiàn)檢索與論文寫作培訓(xùn)課件
- SQL Server 2000在醫(yī)院收費(fèi)審計(jì)的運(yùn)用
- 北師大版小學(xué)三年級數(shù)學(xué)下冊課件(全冊)
- 工程臨時(shí)用工確認(rèn)單
- 簡約清新大氣餐飲行業(yè)企業(yè)介紹模板課件
- 氮?dú)庵舷⑹鹿拾咐?jīng)驗(yàn)分享
- 某公司年度生產(chǎn)經(jīng)營計(jì)劃書
- 廠房租賃合同標(biāo)準(zhǔn)版(通用10篇)
- 《教育心理學(xué)》教材
評論
0/150
提交評論