![山西省忻州市2022-2023學年高三數(shù)學第一學期期末復習檢測試題含解析_第1頁](http://file4.renrendoc.com/view14/M0A/38/25/wKhkGWaEl9iAG7rBAAICEKlVtqE743.jpg)
![山西省忻州市2022-2023學年高三數(shù)學第一學期期末復習檢測試題含解析_第2頁](http://file4.renrendoc.com/view14/M0A/38/25/wKhkGWaEl9iAG7rBAAICEKlVtqE7432.jpg)
![山西省忻州市2022-2023學年高三數(shù)學第一學期期末復習檢測試題含解析_第3頁](http://file4.renrendoc.com/view14/M0A/38/25/wKhkGWaEl9iAG7rBAAICEKlVtqE7433.jpg)
![山西省忻州市2022-2023學年高三數(shù)學第一學期期末復習檢測試題含解析_第4頁](http://file4.renrendoc.com/view14/M0A/38/25/wKhkGWaEl9iAG7rBAAICEKlVtqE7434.jpg)
![山西省忻州市2022-2023學年高三數(shù)學第一學期期末復習檢測試題含解析_第5頁](http://file4.renrendoc.com/view14/M0A/38/25/wKhkGWaEl9iAG7rBAAICEKlVtqE7435.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,若,則()A. B. C. D.2.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.33.我國古代數(shù)學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺4.設函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.35.國務院發(fā)布《關于進一步調整優(yōu)化結構、提高教育經費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構統(tǒng)計了年至年國家財政性教育經費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經費的支出持續(xù)增長B.年以來,國家財政性教育經費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經費的支出增長最多的年份是年6.的展開式中,含項的系數(shù)為()A. B. C. D.7.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁8.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得9.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.10.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%11.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.12.設集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.14.若冪函數(shù)的圖象經過點,則其單調遞減區(qū)間為_______.15.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.16.函數(shù)的定義域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.18.(12分)已知數(shù)列{an}的各項均為正,Sn為數(shù)列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設bn,求數(shù)列{bn}的前n項和.19.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.20.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調遞增區(qū)間及圖象的對稱軸方程.21.(12分)設函數(shù),,.(1)求函數(shù)的單調區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)2019年6月,國內的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數(shù)有變化?說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.2、C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯(lián)系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.3、A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.4、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉化求解,即可得出結果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結合以及函數(shù)與方程的應用,考查轉化思想以及計算能力,屬于??碱}型.5、C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎.6、B【解析】
在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.7、A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.8、A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.9、D【解析】
如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.10、B【解析】試題分析:由題意故選B.考點:正態(tài)分布11、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.12、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由題意設向量的坐標,再結合平面向量數(shù)量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數(shù)量積的坐標運算,意在考查學生對這些知識的理解掌握水平.14、【解析】
利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調遞減區(qū)間.【詳解】解:冪函數(shù)的圖象經過點,則,解得;所以,其中;所以的單調遞減區(qū)間為.故答案為:.【點睛】本題考查了冪函數(shù)的圖象與性質的應用問題,屬于基礎題.15、1【解析】
把向量進行轉化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側重考查數(shù)學運算的核心素養(yǎng).16、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①證明見解析;②證明見解析【解析】
(1)解方程即可;(2)①設直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標準方程為:(2)①,,設直線代入橢圓方程:設,,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關系,本題思路簡單,但計算量比較大,是一道有一定難度的題.18、(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項公式;(2)利用錯位相減法進行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項和為Tn,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關系判定等差數(shù)列,根據(jù)錯位相減進行數(shù)列求和,關鍵在于熟記方法準確計算.19、(1);(2).【解析】
(1)分類討論,,,即可得出結果;(2)先由題意,將問題轉化為即可,再求出,的最小值,解不等式即可得出結果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質即可,屬于??碱}型.20、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關系式的變換的應用求出結果.(2)首先把函數(shù)的關系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)的性質的應用求出結果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦型函數(shù)的性質的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.21、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導函數(shù),分類討論即可求解;(2)(i)結合(1)的單調性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設,通過轉化,討論函數(shù)的單調性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調遞增,當時,的解集為,的解集為,所以的單調增區(qū)間為,的單調減區(qū)間為;(2)(i)由(1)可知,當時,在上單調遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調遞增,所以,所以,即,所以單調遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導函數(shù)處理函數(shù)的單調性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉化證明與零點相關的命題.22、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能化高架活動地板項目可行性研究報告
- 2025年排水閥門項目可行性研究報告
- 2025年大紅描金粉蠟箋項目可行性研究報告
- 2025年壓片機項目可行性研究報告
- 2025年全粒面填充項目可行性研究報告
- 2025年PVC可調電容項目可行性研究報告
- 2025至2030年中國陶瓷纖維澆注料數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國轉動計數(shù)器數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國落地通風柜數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年樺木皮項目投資價值分析報告
- 2025年工貿企業(yè)春節(jié)復工復產方案
- 安防監(jiān)控工程施工方案(3篇)
- 2025年藍莓種苗行業(yè)深度研究分析報告
- 【道法】歷久彌新的思想理念課件 2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 《糖尿病診療規(guī)范》課件
- 2025年度消防工程安全防護措施設計固定總價合同范本3篇
- 2025年事業(yè)單位財務工作計劃(三篇)
- Unit 2 Know your body(說課稿)-2024-2025學年外研版(三起)(2024)英語三年級下冊
- 民辦中學班主任工作考核細則
- 2024年初三數(shù)學競賽考試試題
- citrix桌面虛擬化平臺健康檢查指南10
評論
0/150
提交評論