版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
精選高中數(shù)學(xué)說課稿錦集7篇
精選高中數(shù)學(xué)說課稿錦集7篇
作為一名老師,常常要寫一份優(yōu)秀的說課稿,借助說課稿可以有效提高教學(xué)
效率。那要怎么寫好說課稿呢?以下是小編精心整理的高中數(shù)學(xué)說課稿7篇,僅
供參考,大家一起來看看吧。
高中數(shù)學(xué)說課稿篇1
一、說教材
(一)教材的地位和作用
本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學(xué)過的過直線外一點作已知
直線的垂線、線段的中點、角的平分線等知識是學(xué)習(xí)本節(jié)新知識的基礎(chǔ),其中三
角形的高學(xué)生從小學(xué)起已開始接觸,教材從學(xué)生已有認(rèn)知出發(fā),從高入手,利用
圖形,給高作了具體定義,使學(xué)生了解三角形的高為線段,進(jìn)而引出三角形的另
外幾種特殊線段一一中線、角平分線。通過本節(jié)內(nèi)容學(xué)習(xí),可使學(xué)生掌握三角形
的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學(xué)習(xí)作圖、觀察與
探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于
一點,這為以后三角形的內(nèi)心、重心等知識的學(xué)習(xí)打下一定的基礎(chǔ),另外,本節(jié)
內(nèi)容也是日后學(xué)習(xí)等腰三角形等特殊三角形的墊腳石。故學(xué)好本節(jié)內(nèi)容是十分必
要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學(xué)
的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學(xué)生難以
掌握,故在各類三角形中作出它們是本課的難點。
(二)教學(xué)目標(biāo)分析
本節(jié)課的教學(xué)設(shè)計力圖體現(xiàn)“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著重培養(yǎng)
和發(fā)展學(xué)生基本作圖能力、語言表達(dá)能力、觀察能力等,根據(jù)這一目的確定本節(jié)
教學(xué)目標(biāo)為:
1、理解三角形的高、中線、角平分線的概念
2、能正確作出一個三角形的高、中線、角平分線
3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學(xué)活動,感受數(shù)學(xué)語言的
準(zhǔn)確性,提高觀察能力,語言表達(dá)能力,發(fā)展推理能力。
重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出
它們
難點:在各種三角形中作出它們的高
二、說教法
1、情境創(chuàng)設(shè)法:利用張師傅如何將一塊三角形的地分成面積相等的兩塊三
角形地創(chuàng)設(shè)問題情境,并引導(dǎo)學(xué)生去簡單分析思路,目的使數(shù)學(xué)能密切聯(lián)系實際
體現(xiàn)知識的形成和應(yīng)用過程。以實際問題為出發(fā)點和歸宿,更能貼近學(xué)生生活,
以激發(fā)學(xué)生對學(xué)習(xí)本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運用所學(xué)知識解決問題的能力。
2、加強(qiáng)學(xué)生學(xué)習(xí)的主動性與探究性在課堂中要充分調(diào)動學(xué)生自主學(xué)習(xí)的潛
能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜
悅。學(xué)生在畫一畫、折一折、何三個探究活動中體驗數(shù)學(xué)知識的形成過程。當(dāng)學(xué)
生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學(xué)生的團(tuán)隊作
用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強(qiáng)學(xué)生的直觀感受,掃除學(xué)生從形象思
維難以跨越到抽象思維的障礙,突出重點,突破難點。
三、說學(xué)法
1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、
高的準(zhǔn)確理解、作圖與正確運用,而突破難點的關(guān)鍵是運用好數(shù)形結(jié)合的數(shù)學(xué)思
想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進(jìn)一步架起數(shù)與形
之間的橋梁,加強(qiáng)知識間的相互聯(lián)系。
2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表
達(dá)思想又可促進(jìn)數(shù)學(xué)思考,擴(kuò)大和加深對問題的認(rèn)識,本節(jié)課中我讓學(xué)生以小組
進(jìn)行探究,歸納圖形特征,做到仔細(xì)觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓
學(xué)生通過探索活動來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學(xué)生學(xué)習(xí)
的方式,發(fā)展創(chuàng)新思維能力。
四、說教學(xué)過程:
1、創(chuàng)設(shè)問題情境,引出新知:從生活實例引出新問題,調(diào)動學(xué)生學(xué)習(xí)積極性
2、預(yù)習(xí)檢查:以題組的形勢
考點1:三角形的高
1.如圖7.1.2-1,在aABC中,BC邊上的高是;在aAFC中,CF邊
上的高是;在aABE中,AB邊上的高是.
2.如圖7.1.2-2,AABC的三條高AD、BE、CF相交于點H,則AABH的三條
高是,這三條高交于用口是4、△、
△的高.
3.如圖7.1.2-3,在aABC中EF〃AC,BD_LAC于D,交EF于G,則下面說話
中錯誤的是()
A.BD是4ABC的高BD是ABCD的高C.EG是AABD的高D.BG是ABEF的高
7.1.2《三角形的高、中線、角平分線》說課稿
圖7.1.2-1圖7.1.2-2圖7.1.2-3
4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形
是()
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定
5.三角形的三條高的交點一定在()
A.三角形內(nèi)部B.三角形的外部C.三角形的內(nèi)部或外部D.以上答案都不對
考點2:三角形的中線與角平分線
6.如圖7.1.2-5所示:(1)AD_LBC,垂足為D,則AD是的高,
Z=Z=90°.
(2)AE平分NBAC,交BC于E點,則AE叫做aABC的一,
Z=Z=7.L2《三角形的高、中線、角平分線》說課稿Z.
(3)若AF=FC,則AABC的中線是,SAABF=.
(4)若BG=GH=HF,則AG是的中線,AH是的中線.
圖7.1.2-5圖7.1.2-6圖7.1.2-7
7.如圖7.1.2-6,DE〃BC,CD是NACB的平分線,ZACB=60°,那么
ZEDC=度.
8.如圖7.1.2-7,BD=DC,ZABN=7.1.2《三角形的高、中線、角平分線》說
課稿NABC,則AD是aABC的—線,BN是aABC的.,
ND是aBNC的線.
9.下列判斷中,正確的個數(shù)為()
(1)D是aABC中BC邊上的一個點,且BD=CD,則AD是AABC的中線
(2)D是aABC中BC邊上的一個點,且NADC=90°,則AD是aABC的高
(3)D是AABC中BC邊上的一個點,且/BAD=7.L2《三角形的高、中線、
角平分線》說課稿NBAC,則AD是AABC的角平分線
(4)三角形的中線、高、角平分線都是線段
A.IB.2C.3D.4
3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關(guān)注學(xué)
生對高和邊的對應(yīng)關(guān)系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖
形,讓生用語言描述,師加以修正,目的發(fā)展學(xué)生的觀察力與語言表述能力。在
此基礎(chǔ)上讓學(xué)生明確三角形的高是一條線段。為了培養(yǎng)學(xué)生的繪圖能力,讓小組
之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸
納三角形高的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。
在活動中,師應(yīng)重點關(guān)注:
①學(xué)生能否多方位的加以探究
②學(xué)生能否用流利的語言描述自己的發(fā)現(xiàn)
③學(xué)生能否對不同的觀點進(jìn)行質(zhì)疑,感受數(shù)學(xué)結(jié)論的正確性。之后設(shè)計的是
鞏固性練習(xí),通過學(xué)生練習(xí),對三角形高的的有關(guān)知識加以鞏固,讓學(xué)生從運用
所學(xué)知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學(xué)習(xí)的積極性。
3、探究活動2:探究三角形的中線:學(xué)生在畫一畫中體會三角形中線的定
義,培養(yǎng)學(xué)生動腦、動手能力,語言表達(dá)能力。
4、探究活動3:探究三角形的角平分線。首先讓學(xué)生折一折,在動手操作
中體會折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、
鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述
小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。從而很好的培養(yǎng)了學(xué)生的動手操作
和探究能力。
5,練習(xí)鞏固,深化拓展
先以搶答形式解決問題1、問題2,讓學(xué)生利用所學(xué)知識,進(jìn)一步鞏固三角
形的高、中線、角平分線的有關(guān)概念,提高學(xué)生獨立解決問題的能力。拓展練習(xí)
是一個綜合性題目,一方面引導(dǎo)學(xué)生從復(fù)雜圖形中抽取基本圖形,從而加強(qiáng)學(xué)生
對概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運用以增強(qiáng)直觀性。
6、感悟與收獲:進(jìn)一步提升學(xué)生對知識點理解。
7、作業(yè)布置:讓學(xué)生運用數(shù)學(xué)知識解決生活實例,是讓學(xué)生感受數(shù)學(xué)和生
活的聯(lián)系及數(shù)學(xué)在生活中的重要性,充分體現(xiàn)數(shù)學(xué)于生活又還原于生活。
高中數(shù)學(xué)說課稿篇2
一、教學(xué)背景分析
1,教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單
幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)
的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等
內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個
解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程
的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)
程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外
學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我
制定如下教學(xué)目標(biāo):
3、教學(xué)目標(biāo)
(1)知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;
②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方
程;
③利用圓的標(biāo)準(zhǔn)方程解決簡單的實際問題。
(2)能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
②加深對數(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運用;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識。
(3)情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
②在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4、教學(xué)重點與難點
(1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點:①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題
教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最
近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實
際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。
通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)
用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對具體的教學(xué)過程和設(shè)計加以說明:
三、教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高
反饋訓(xùn)練形成方法小結(jié)反思拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境一一啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行
駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度
轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知一一求軌跡方程的一般
方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原
點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實際問題創(chuàng)
設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興
趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研
究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究一一獲得新知
問題二1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓
的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程。然后再
讓學(xué)生對圓心不在原點的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)
果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。
(三)應(yīng)用舉例一一鞏固提高
1、直接應(yīng)用內(nèi)化新知
問題三1、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點。
2、寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)
準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以
安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之
間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。
II、靈活應(yīng)用提升能力
問題四1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快
求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)
生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條
件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)
生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在
論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探
究氣氛達(dá)到高潮。
HI、實際應(yīng)用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高
0P=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)0
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同
時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)
慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練一一形成方法
問題六1、求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環(huán)節(jié)一一反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性
訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜
悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求
過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因
此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的
情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這
樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思一一拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想
和待定系數(shù)的方法
①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:
圓心在原點時,半徑為r的圓的標(biāo)準(zhǔn)方程為:。
②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,40(B)思維拓展型作業(yè):
試推導(dǎo)過圓上一點的切線方程。
3、激發(fā)新疑
問題七1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體
會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知
識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重
要的準(zhǔn)備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的
進(jìn)一步闡述我的教學(xué)設(shè)計:
橫向闡述教學(xué)設(shè)計
(一)突出重點抓住關(guān)鍵突破難點
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的
學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個
參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為
應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題
的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求
知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從
中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)
方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題
——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突
破。
(二)學(xué)生主體教師主導(dǎo)探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的
標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另
外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生
分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,
既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不
斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成
本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維提升能力激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊
到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多
解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,
并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與
知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具
體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我
的說課,發(fā)揮我們的創(chuàng)造性,力爭”使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說課稿篇3
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形
的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生
活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考
當(dāng)中也時??家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角
形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時
判斷解的個數(shù)。
根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標(biāo)
教學(xué)目標(biāo)分析:
知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)
學(xué)的實際應(yīng)用價值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和
合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對
象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐
步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察一一猜想一一證明一一應(yīng)用”這一思維方法,采
取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意
三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手
嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,
本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右
圖所示的部分,ZA=47°,ZB=53°,AB長為1m,想修好這個零件,但他不知
道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人
的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦
定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算
器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理
性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析
層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角
形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ?,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對
數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問
題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩
角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在4ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握
已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在AABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在aABC中,已知下列條件,解三角形。
(l)a=20cm,b=llcm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
L用向量證明了正弦定
理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出
正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而
且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注
重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么力、?發(fā)現(xiàn)正弦定理
不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
高中數(shù)學(xué)說課稿篇4
高中數(shù)學(xué)第三冊(選修)II第一章第2節(jié)第一課時
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機(jī)變量取值分布的特征
數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟(jì)統(tǒng)
計,風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的
影響。
教學(xué)重點與難點
重點:離散型隨機(jī)變量期望的概念及其實際含義。
難點:離散型隨機(jī)變量期望的實際應(yīng)用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難
以理解,因此把對離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點。此
外,學(xué)生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點。
二、教學(xué)目標(biāo)
[知識與技能目標(biāo)]
通過實例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機(jī)變量的期望,并解決一些實際問題。
[過程與方法目標(biāo)]
經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會從特殊到一般的思想,培養(yǎng)學(xué)
生歸納、概括等合情推理能力。
通過實際應(yīng)用,培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)
學(xué)應(yīng)用意識。
[情感與態(tài)度目標(biāo)]
通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分
析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
三、教法選擇
引導(dǎo)發(fā)現(xiàn)法
四、學(xué)法指導(dǎo)
“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)
會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
五、教學(xué)的基本流程設(shè)計
高中數(shù)學(xué)第三冊《離散型隨機(jī)變量的期望》說課教案.rar
高中數(shù)學(xué)說課稿篇5
一、教材分析
本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計》中的第三節(jié)“變量間的相關(guān)
關(guān)系”的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散
點圖,并利用散點圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上
介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。
從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容
的難點之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計學(xué)的重要
基礎(chǔ)。
二、教學(xué)目標(biāo)
根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點確定本節(jié)課的教學(xué)
目標(biāo)如下:
知識與技能:
1.知道最小二乘法和回歸分析的思想;
2.能根據(jù)線性回歸方程系數(shù)公式求出回歸方程
過程與方法:
經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使
用技術(shù)的意識。
情感態(tài)度與價值觀
通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)
三、重點難點分析:
根據(jù)目標(biāo)分析,確定教學(xué)重點和難點如下:
教學(xué)重點:
1.知道最小二乘法和回歸分析的思想;
2.會求回歸直線
教學(xué)難點:
建立回歸思想,會求回歸直線
四、教學(xué)設(shè)計
提出問題
理論探究
驗證結(jié)論
小結(jié)提升
應(yīng)用實踐
作業(yè)設(shè)計
教學(xué)環(huán)節(jié)
內(nèi)容及說明
創(chuàng)設(shè)情境
探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣
本數(shù)據(jù):
問題與引導(dǎo)設(shè)計
師生活動
設(shè)計意圖
問題1.利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是
負(fù)相關(guān)?
教師提問,學(xué)生
通過動手操作得
出散點圖并回答
以舊“探”新:對舊的知識進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的
建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容
提供必要的基礎(chǔ)。
教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點圖是研究兩個變量相關(guān)關(guān)系的
一種重要手段。下面,請同學(xué)們根據(jù)得出的散點圖,思考下面的問題2.
問題2.甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同
學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,
乙,丙三個同學(xué)的判斷有什么看法?
學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有
的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一
該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達(dá)自己的看法。通過
設(shè)計該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,
體會觀測點與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。
問題3.反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出
的問題多
在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進(jìn)行
交流,提出問題
通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)
生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。
學(xué)生可能提出的問題:
①為什么甲、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確
的可能性較???
②某人年齡在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時
呢?
③這些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?
④怎樣用數(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火
熱的思考”成果
高中數(shù)學(xué)說課稿篇6
說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)《數(shù)學(xué)必修4》第二章
第四節(jié)“平面向量的數(shù)量積”的第一課時--平面向量數(shù)量積的物理背景及其含
義。
下面,我從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)
媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進(jìn)行說明。
一、背景分析
1,學(xué)習(xí)任務(wù)分析
平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學(xué)
的一個重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩
課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標(biāo)運
算,本節(jié)課是第一課時。
本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積
的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運算律,使學(xué)生體會類比的思想方法,
進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背
景的抽象,又是研究性質(zhì)和運算律的基礎(chǔ)。同時也因為在這個概念中,既有長度
又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點,不僅應(yīng)用廣泛,
而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概
念,自然也是本節(jié)課教學(xué)的重點。
2、學(xué)生情況分析
學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實數(shù)的運算體系,掌握了向量的概念及
其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:
即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數(shù)運
算類比的基礎(chǔ)上研究性質(zhì)和運算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)
生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線
性運算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積
運算后,形卻消失了,學(xué)生對這一點是很難接受的;另一方面,由于受實數(shù)乘法
運算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運算律的理
解。因而本節(jié)課教學(xué)的難點數(shù)量積的概念。
二、教學(xué)目標(biāo)設(shè)計
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》對本節(jié)課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。
(2)體會平面向量的數(shù)量積與向量投影的關(guān)系。
(3)能用運數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂
直關(guān)系。
從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點,也是難點。
為了突破這一難點,首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的
實例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運算律,不僅能夠
使學(xué)生更加全面深刻地理解概念,同時也是進(jìn)行相關(guān)計算和判斷的理論依據(jù)。最
后,無論是數(shù)量積的性質(zhì)還是運算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探
究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是
很好的載體。
綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實際,我將本節(jié)課的教學(xué)目標(biāo)定為:
1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;
2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運算律,
并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷;
3、體會類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能
力。
三、課堂結(jié)構(gòu)設(shè)計
本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和
發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的
教學(xué):
即先從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概
念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,
然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)
識,形成知識體系。
四、教學(xué)媒體設(shè)計
和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的
夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)
容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的
完成,順利實現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實際特點,在教學(xué)媒體的使
用上,我的.設(shè)想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,
以此來節(jié)約課時,增加課堂容量。
2、設(shè)計科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另
一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。
平面向量數(shù)量積的物理背景及其含義
一、數(shù)量積的概念二、數(shù)量積的性質(zhì)四、應(yīng)用與提高
1、概念:例1:
2、概念強(qiáng)調(diào)⑴記法例2:
(2)“規(guī)定”三、數(shù)量積的運算律例3:
3、幾何意義:
4、物理意義:
五、教學(xué)過程設(shè)計
課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)
生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我
主要安排以下六個活動:
活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣
正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)
量積這一重要概念,和向量的線性運算一樣,也有其數(shù)學(xué)背景和物理背景,為了
體現(xiàn)這一點,我設(shè)計以下幾個問題:
問題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結(jié)果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究
了這種運算的?
期望學(xué)生回答:物理模型一概念一性質(zhì)一運算律一應(yīng)用
問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,
(1)力F所做的功W=o
(2)請同學(xué)們分析這個公式的特點:
W(功)是量,
F(力)是量,
S(位移)是量,
a是。
問題1的設(shè)計意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所
要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運算,但與向量的
線性運算相比,數(shù)量積運算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。
問題2的設(shè)計意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研
究方法和順序,為教學(xué)活動指明方向。
問題3的設(shè)計意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研
究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實意義的,從
而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。
活動二:探究數(shù)量積的概念
1,概念的抽象
在分析“功”的計算公式的基礎(chǔ)上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與
位移推廣到一般向量,其結(jié)果又該如何表述?
學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向
量的大小及其夾角余弦的乘積。這樣,學(xué)生事實上已經(jīng)得到數(shù)量積概念的文字表
述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數(shù)量I
I-I
Icos
叫做
與
的數(shù)量積(或內(nèi)積),記作:
,即:
Icos
在強(qiáng)調(diào)記法和“規(guī)定”后,為了讓學(xué)生進(jìn)一步認(rèn)識這一概念,提出問題5
問題5:向量的數(shù)量積運算與線性運算的結(jié)果有什么不同?影響數(shù)量積大小
的因素有哪些?并完成下表:
角
的范圍0°W
=90°0°
W180°
*
的符號
通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運算的結(jié)果有著本質(zhì)的
不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解
數(shù)量積的性質(zhì)和運算律做好鋪墊。
3、探究數(shù)量積的幾何意義
這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投
影的定義,直到講完例1后,為了證明運算律的第三條才直接以結(jié)論的形式呈現(xiàn)
給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接
由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,
然后提出問題5。
如圖,我們把|
|cos
(I
Icos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=|
|cos
問題6:數(shù)量積的幾何意義是什么?
這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的概念,從中體會數(shù)量積
與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。
4、研究數(shù)量積的物理意義
數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就
會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計以下問題一方面使學(xué)
生嘗試計算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的
性質(zhì)埋下伏筆。
問題7:
(1)請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積。
(2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運動:
①、在水平面上位移為10米;
②、豎直下降10米;
③、豎直向上提升10米;
④、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數(shù)量積的運算性質(zhì)
1、性質(zhì)的發(fā)現(xiàn)
教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一
探究活動,在完成上述練習(xí)后,我不失時機(jī)地提出問題8:
(1)將嘗試練習(xí)中的①②③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?
⑵比較I
I與I
IXI
I的大小,你有什么結(jié)論?
在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利
用數(shù)量積的定義給予證明,完成探究活動。
2、明晰數(shù)量積的性質(zhì)
3、性質(zhì)的證明
這樣設(shè)計體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,
讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的
熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。
活動四:探究數(shù)量積的運算律
1、運算律的發(fā)現(xiàn)
關(guān)于運算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9
問題9:我們學(xué)過了實數(shù)乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運算律。
學(xué)生可能會提出以下猜測:①
(2)(
)@(
)?
+
猜測①的正確性是顯而易見的。
關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:
猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?
學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。
這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運算律:
2、明晰數(shù)量積的運算律
3、證明運算律
學(xué)生獨立證明運算律(2)
我把運算運算律(2)的證明交給學(xué)生完成,在證明時,學(xué)生可能只考慮到
入>0的情況,為了幫助學(xué)生完善證明,提出以下問題:
當(dāng)入
與人
9
與人
的方向的關(guān)系如何?此時,向量入
與
及
與人
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時,這個證明由師
生共同完成,我想這也是教材的本意。
在這個環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行
猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論
證的能力,同時也增強(qiáng)了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機(jī)
的結(jié)合在一起。
活動五:應(yīng)用與提高
例1、(師生共同完成)已知I
I=6,|
I=4,
與
的夾角為60°,求
(
+2
)?(
-3
),并思考此運算過程類似于哪種運算?
例2、(學(xué)生獨立完成)對任意向量
,b是否有以下結(jié)論:
(1)(
+
)2=
2+2
2
(2)(
+
)?(
)=
2—
2
例3、(師生共同完成)已知
I=3,|
I=4,且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實際選擇了其中的三道,并對例1
和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運算律的綜合應(yīng)用,教學(xué)時,我
重點從對運算原理的分析和運算過程的規(guī)范書寫兩個方面加強(qiáng)示范。完成計算
后,進(jìn)一步提出問題:此運算過程類似于哪種運算?目的是想讓學(xué)生在類比多項
式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學(xué)生獨立完成證明,一
方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達(dá)到創(chuàng)新的目的。
例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運算律的同時,教給學(xué)生如何利用數(shù)量積
來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時重點給學(xué)生
分析數(shù)與形的轉(zhuǎn)化原理。
為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運算律,并能夠應(yīng)用
數(shù)量積解決有關(guān)問題,再安排如下練習(xí):
1、下列兩個命題正確嗎?為什么?
①、若
W0,則對任一非零向量
,有
70.
②、若
W0,
,則
2、已知AABC中,
,當(dāng)
=0時,試判斷AABC的形狀。
安排練習(xí)1的主要目的是,使學(xué)生在與實數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量
積這一重要運算,
通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個向量的夾角,進(jìn)一步感受數(shù)量積的
應(yīng)用價值。
活動六:小結(jié)提升與作業(yè)布置
1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?
2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?
3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探
究過程中,滲透了哪些數(shù)學(xué)思想?
4、類比向量的線性運算,我們還應(yīng)該怎樣研究數(shù)量積?
通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻
的認(rèn)識,同時也為下
一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。
布置作業(yè):
1、課本P121習(xí)題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧城市展覽項目合作協(xié)議4篇
- 2025年度智慧城市基礎(chǔ)設(shè)施顧問合同4篇
- 2025年度企業(yè)人力資源戰(zhàn)略規(guī)劃與執(zhí)行合同3篇
- 2024版經(jīng)營辦公場地租賃合同
- 2025年度石料廠承包與環(huán)保項目融資合作協(xié)議書4篇
- 2025年度智能冷庫建設(shè)與租賃服務(wù)合同范本4篇
- 2024版旅客運輸合同范本
- 2025年度土地承包經(jīng)營權(quán)流轉(zhuǎn)與農(nóng)村土地整治合同4篇
- 2024-2026年中國銀行IT市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 中國水力不從心電項目投資可行性研究報告
- 風(fēng)水學(xué)的基礎(chǔ)知識培訓(xùn)
- 吸入療法在呼吸康復(fù)應(yīng)用中的中國專家共識2022版
- 1-35kV電纜技術(shù)參數(shù)表
- 信息科技課程標(biāo)準(zhǔn)測(2022版)考試題庫及答案
- 施工組織設(shè)計方案針對性、完整性
- 2002版干部履歷表(貴州省)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
- 2024年服裝制版師(高級)職業(yè)鑒定考試復(fù)習(xí)題庫(含答案)
- 門診部縮短就診等候時間PDCA案例-課件
- 第21課《鄒忌諷齊王納諫》對比閱讀 部編版語文九年級下冊
評論
0/150
提交評論