2022-2023學年北京市房山區(qū)九級九年級數學第一學期期末聯考模擬試題含解析_第1頁
2022-2023學年北京市房山區(qū)九級九年級數學第一學期期末聯考模擬試題含解析_第2頁
2022-2023學年北京市房山區(qū)九級九年級數學第一學期期末聯考模擬試題含解析_第3頁
2022-2023學年北京市房山區(qū)九級九年級數學第一學期期末聯考模擬試題含解析_第4頁
2022-2023學年北京市房山區(qū)九級九年級數學第一學期期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,將繞點A按順時針方向旋轉一定角度得到,點B的對應點D恰好落在邊上.若,則的長為()A.0.5 B.1.5 C. D.12.如圖,在?ABCD中,E是AB的中點,EC交BD于點F,則△BEF與△DCB的面積比為()A. B. C. D.3.某射擊運動員在訓練中射擊了10次,成績如圖所示:下列結論不正確的是()A.眾數是8 B.中位數是8 C.平均數是8.2 D.方差是1.24.口袋中有2個紅球和1個黑球,每次摸到后放回,兩次都摸到紅球的概率為()A. B. C. D.5.如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是()A. B. C. D.6.定義新運算:,例如:,,則y=2⊕x(x≠0)的圖象是()A. B. C. D.7.在同一坐標系中,一次函數y=ax+2與二次函數y=x2+a的圖象可能是()A. B. C. D.8.如圖,在矩形中,對角線與相交于點,,垂足為點,,且,則的長為()A. B. C. D.9.如圖,菱形ABCD中,∠A=60°,邊AB=8,E為邊DA的中點,P為邊CD上的一點,連接PE、PB,當PE=EB時,線段PE的長為()A.4 B.8 C.4 D.410.下列四張撲克牌圖案,屬于中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉至△A′B′C,使得點A′恰好落在AB上,則旋轉角度為_____.12.如果關于x的方程x2-5x+a=0有兩個相等的實數根,那么a=_____.13.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.14.二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)的圖像上部分點的橫坐標x和縱坐標y的對應值如下表x…-10123…y…-3-3-139…關于x的方程ax2+bx+c=0一個負數解x1滿足k<x1<k+1(k為整數),則k=________.15.如圖所示,△ABC是⊙O的內接三角形,若∠BAC與∠BOC互補,則∠BOC的度數為_____.16.如圖,已知射線,點從B點出發(fā),以每秒1個單位長度沿射線向右運動;同時射線繞點順時針旋轉一周,當射線停止運動時,點隨之停止運動.以為圓心,1個單位長度為半徑畫圓,若運動兩秒后,射線與恰好有且只有一個公共點,則射線旋轉的速度為每秒______度.17.如圖,△ABC中,∠ACB=90°,∠BAC=20°,點O是AB的中點,將OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,當△ACP為等腰三角形時,α的值為_____.18.如圖,在的同側,,點為的中點,若,則的最大值是_____.三、解答題(共66分)19.(10分)在一空曠場地上設計一落地為矩形的小屋,,拴住小狗的長的繩子一端固定在點處,小狗在不能進入小屋內的條件下活動,其可以活動的區(qū)域面積為.(1)如圖1,若,則__________.(2)如圖2,現考慮在(1)中的矩形小屋的右側以為邊拓展一正區(qū)域,使之變成落地為五邊形的小屋,其他條件不變,則在的變化過程中,當取得最小值時,求邊的長及的最小值.20.(6分)已知關于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求證:對于任意實數t,方程都有實數根;21.(6分)為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.(1)開通隧道前,汽車從A地到B地要走多少千米?(2)開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)22.(8分)如圖,的頂點是雙曲線與直線在第二象限的交點.軸于,且.(1)求反比例函數的解析式;(2)直線與雙曲線交點為、,記的面積為,的面積為,求23.(8分)在平面直角坐標系xOy中,△ABC的位置如圖所示.

(1)分別寫出△ABC各個頂點的坐標;

(2)分別寫出頂點A關于x軸對稱的點A′的坐標、頂點B關于y軸對稱的點B′的坐標及頂點C關于原點對稱的點C′的坐標;

(3)求線段BC的長.24.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,D為的中點.過點D作直線AC的垂線,垂足為E,連接OD.(1)求證:∠A=∠DOB;(2)DE與⊙O有怎樣的位置關系?請說明理由.25.(10分)如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別為O(0,0),A(6,0),B(4,3),C(0,3).動點P從點O出發(fā),以每秒個單位長度的速度沿邊OA向終點A運動;動點Q從點B同時出發(fā),以每秒1個單位長度的速度沿邊BC向終點C運動.設運動的時間為t秒,PQ2=y(tǒng).(1)直接寫出y關于t的函數解析式及t的取值范圍:;(2)當PQ=時,求t的值;(3)連接OB交PQ于點D,若雙曲線(k≠0)經過點D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.26.(10分)已知拋物線y=x2+bx+c的圖像過A(﹣1,0)、B(3,0)兩點.求拋物線的解析式和頂點坐標.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】利用∠B的正弦值和正切值可求出BC、AB的長,根據旋轉的性質可得AD=AB,可證明△ADB為等邊三角形,即可求出BD的長,根據CD=BC-BD即可得答案.【詳解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵繞點A按順時針方向旋轉一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選D.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,解直角三角形,熟記性質并判斷出△ABD是等邊三角形是解題的關鍵.2、D【分析】根據平行四邊形的性質得出AB=CD,AB∥CD,根據相似三角形的判定得出△BEF∽△DCF,根據相似三角形的性質和三角形面積公式求出即可.【詳解】解:∵四邊形ABCD是平行四邊形,E為AB的中點,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故選D.【點睛】本題考查了相似三角形的性質和判定和平行四邊形的性質,能熟記相似三角形的性質是解此題的關鍵.3、D【分析】首先根據圖形數出各環(huán)數出現的次數,在進行計算眾數、中位數、平均數、方差.【詳解】根據圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數是8,中位數是8,平均數是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關鍵在于眾數、中位數、平均數和方差的概念.特別是方差的公式.4、D【分析】根據題意畫出樹形圖即可求出兩次都摸到紅球的概率,進而得出選項.【詳解】解:設紅球為1,黑球為2,畫樹形圖得:由樹形圖可知:兩次都摸到紅球的概率為.故選:D.【點睛】本題考查用列表法與樹狀圖法求隨機事件的概率,列舉法(樹形圖法)求概率的關鍵在于列舉出所有可能的結果,列表法是一種,但當一個事件涉及三個或更多元素時,為不重不漏地列出所有可能的結果,通常采用樹形圖.5、A【解析】分析:在Rt△PMN中解題,要充分運用好垂直關系和45度角,因為此題也是點的移動問題,可知矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根據重疊圖形確定面積的求法,作出判斷即可.詳解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由題意得:CM=x,分三種情況:①當0≤x≤2時,如圖1,邊CD與PM交于點E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此時矩形ABCD與△PMN重疊部分是△EMC,∴y=S△EMC=CM?CE=;故選項B和D不正確;②如圖2,當D在邊PN上時,過P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此時x=4,當2<x≤4時,如圖3,矩形ABCD與△PMN重疊部分是四邊形EMCD,過E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD?(DE+CM)==2x﹣2;③當4<x≤6時,如圖4,矩形ABCD與△PMN重疊部分是五邊形EMCGF,過E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故選項A正確;故選:A.點睛:此題是動點問題的函數圖象,有難度,主要考查等腰直角三角形的性質和矩形的性質的應用、動點運動問題的路程表示,注意運用數形結合和分類討論思想的應用.6、D【分析】根據題目中的新定義,可以寫出y=2⊕x函數解析式,從而可以得到相應的函數圖象,本題得以解決.【詳解】解:由新定義得:,根據反比例函數的圖像可知,圖像為D.故選D.【點睛】本題考查函數的圖象,解答本題的關鍵是明確題意,利用新定義寫出正確的函數解析式,再根據函數的解析式確定答案,本題列出來的是反比例函數,所以掌握反比例函數的圖像是關鍵.7、C【解析】試題分析:根據二次函數及一次函數的圖象及性質可得,當a<0時,二次函數開口向上,頂點在y軸負半軸,一次函數經過一、二、四象限;當a>0時,二次函數開口向上,頂點在y軸正半軸,一次函數經過一、二、三象限.符合條件的只有選項C,故答案選C.考點:二次函數和一次函數的圖象及性質.8、C【分析】由矩形的性質得到:設利用勾股定理建立方程求解即可得到答案.【詳解】解:矩形,設則,(舍去)故選C.【點睛】本題考查的是矩形的性質,勾股定理,掌握以上知識點是解題的關鍵.9、D【分析】由菱形的性質可得AB=AD=8,且∠A=60°,可證△ABD是等邊三角形,根據等邊三角形中三線合一,求得BE⊥AD,再利用勾股定理求得EB的長,根據PE=EB,即可求解.【詳解】解:如上圖,連接BD∵四邊形ABCD是菱形,

∴AB=AD=8,且∠A=60°,

∴△ABD是等邊三角形,∵點E是DA的中點,AD=8

∴BE⊥AD,且∠A=60°,AE=

∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,

故選:D.【點睛】本題考查了菱形的性質,等邊三角形判定和性質,直角三角形的性質,靈活運用這些性質進行推理是本題的關鍵.10、B【解析】根據中心對稱圖形的概念和各撲克牌的花色排列特點的求解.解答:解:A、不是中心對稱圖形,不符合題意;B、是中心對稱圖形,符合題意;C、不是中心對稱圖形,不符合題意;D、不是中心對稱圖形,不符合題意.故選B.二、填空題(每小題3分,共24分)11、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉角為60°.故答案為60°.12、【分析】若一元二次方程有兩個相等的實數根,則方程的根的判別式等于0,由此可列出關于a的等式,求出a的值.【詳解】∵關于x的方程x2-5x+a=0有兩個相等的實數根,∴△=25-4a=0,即a=.故答案為:.【點睛】一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.13、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數,然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.14、-1【分析】首先利用表中的數據求出二次函數,再利用求根公式解得x1,再利用夾逼法可確定x1

的取值范圍,可得k.【詳解】解:把x=0,y=-1,x=1,y=-1,x=-1,y=-1代入y=ax2+bx+c得,解得,∴y=x2+x-1,∵△=b2-4ac=12-4×1×(-1)=11,

∴x==?1±,

∵<0,∴=?1-<0,

∵-4≤-≤-1,

∴,

∴-1≤?1?≤,

∵整數k滿足k<x1<k+1,

∴k=-1,

故答案為:-1.【點睛】本題考查了二次函數的圖象和性質,解題的關鍵是求出二次函數的解析式.15、120°【分析】利用圓周角定理得到∠BAC=∠BOC,再利用∠BAC+∠BOC=180°可計算出∠BOC的度數.【詳解】解:∵∠BAC和∠BOC所對的弧都是,∴∠BAC=∠BOC∵∠BAC+∠BOC=180°,∴∠BOC+∠BOC=180°,∴∠BOC=120°.故答案為:120°.【點睛】本題考查了圓周角定理,熟練掌握圓周角定理是解決本題的關鍵.16、30或60【分析】射線與恰好有且只有一個公共點就是射線與相切,分兩種情況畫出圖形,利用圓的切線的性質和30°角的直角三角形的性質求出旋轉角,然后根據旋轉速度=旋轉的度數÷時間即得答案.【詳解】解:如圖1,當射線與在射線BA上方相切時,符合題意,設切點為C,連接OC,則OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此時射線旋轉的速度為每秒60°÷2=30°;如圖2,當射線與在射線BA下方相切時,也符合題意,設切點為D,連接OD,則OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此時射線旋轉的速度為每秒120°÷2=60°;故答案為:30或60.【點睛】本題考查了圓的切線的性質、30°角的直角三角形的性質和旋轉的有關概念,正確理解題意、熟練掌握基本知識是解題的關鍵.17、40°或70°或100°.【分析】根據旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.先連結AP,如圖,由旋轉的性質得OP=OB,則可判斷點P、C在以AB為直徑的圓上,利用圓周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分類討論:當AP=AC時,∠APC=∠ACP,即90°﹣α=70°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,;當CP=CA時,∠CAP=∠CAP,即α+20°=70°,再分別解關于α的方程即可.【詳解】連結AP,如圖,∵點O是AB的中點,∴OA=OB,∵OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,∴OP=OB,∴點P在以AB為直徑的圓上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴點P、C在以AB為直徑的圓上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,當AP=AC時,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;當CP=CA時,∠CAP=∠CPA,即α+20°=70°,解得α=100°,綜上所述,α的值為40°或70°或100°.故答案為40°或70°或100°.考點:旋轉的性質.18、14【分析】如圖,作點A關于CM的對稱點A′,點B關于DM的對稱點B′,證明△A′MB′為等邊三角形,即可解決問題.【詳解】解:如圖,作點關于的對稱點,點關于的對稱點.,,,,,為等邊三角形,的最大值為,故答案為.【點睛】本題考查等邊三角形的判定和性質,兩點之間線段最短,解題的關鍵是學會添加常用輔助線,學會利用兩點之間線段最短解決最值問題三、解答題(共66分)19、(1)88π;(2)BC長為;S的最小值為.【分析】(1)小狗活動的區(qū)域面積為以B為圓心、10為半徑的圓,以C為圓心、6為半徑的圓和以A為圓心、4為半徑的圓的面積和,據此列式求解可得;

(2)此時小狗活動的區(qū)域面積為以B為圓心、10為半徑的圓,以A為圓心、x為半徑的圓、以C為圓心、10-x為半徑的圓的面積和,列出函數解析式,由二次函數的性質解答即可.【詳解】解:(1)如圖1,拴住小狗的10m長的繩子一端固定在B點處,小狗可以活動的區(qū)域如圖所示:由圖可知,小狗活動的區(qū)域面積為以B為圓心、10為半徑的圓,以C為圓心、6為半徑的圓和以A為圓心、4為半徑的圓的面積和,

∴S=×π?102+?π?62+?π?42=88π,故答案為:88π;(2)如圖2,設BC=x,則AB=10-x,∴S=?π?102+?π?x2+?π?(10-x)2=(x2-5x+250)=(x-)2+,當x=時,S取得最小值,∴BC長為;S的最小值為.【點睛】本題主要考查二次函數的應用,解題的關鍵是根據繩子的長度結合圖形得出其活動區(qū)域及利用扇形的面積公式表示出活動區(qū)域面積.20、見解析【分析】根據方程的系數結合根的判別式,可得出△=(t-3)2≥1,由此可證出:對于任意實數t,方程都有實數根.【詳解】證明:△=[-(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2,∴對于任意實數t,都有(t﹣3)2≥1,∴方程都有實數根.【點睛】本題考查了根的判別式,解題的關鍵是:牢記“當△≥1時,方程有實數根”.21、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【分析】(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.22、(1);(2)【分析】(1)由可得,再根據函數圖像可得,即可得到函數解析式.(2)先求得一次函數解析式,再聯立方程組求得點A和點C的坐標,記直線與軸的交點為,求得點坐標為,,即可求得.【詳解】解:(1)∵,∴雙曲線在二、四象限反比例函數的解析式為(2)由(1)可得,代入可得一次函數的解析式為,聯立方程組,得,易求得點為,點為記直線與軸的交點為,在中,當y=0,則x=2,∴點坐標為,,.【點睛】此題首先利用待定系數法確定函數解析式,然后利用解方程組來確定圖象的交點坐標,及利用坐標求出線段和圖形的面積.23、(1)A(-4,3),C(-2,5),B(3,0);(2)點A′的坐標為:(-4,-3),B′的坐標為:(-3,0),點C′的坐標為:(2,-5);(3)5..【分析】(1)直接利用坐標系得出各點坐標即可;

(2)利用關于坐標軸對稱點的性質分別得出答案;

(3)直接利用勾股定理得出答案.【詳解】(1)A(-4,3),C(-2,5),B(3,0);(2)如圖所示:點A′的坐標為:(-4,-3),B′的坐標為:(-3,0),點C′的坐標為:(2,-5);

(3)線段BC的長為:=5.【點睛】此題主要考查關于坐標軸對稱點的性質,勾股定理,正確得出對應點位置是解題關鍵.24、(1)見解析;(2)相切,理由見解析【分析】(1)連接OC,由D為的中點,得到,根據圓周角定理即可得到結論;

(2)根據平行線的判定定理得到AE∥OD,根據平行線的性質得到OD⊥DE,從而得到結論.【詳解】(1)證明:連接OC,∵D為的中點,∴,∴∠BOD=∠BOC,由圓周角定理可知,∠BAC=∠BOC,∴∠A=∠DOB;(2)解:DE與⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE與⊙O相切.【點睛】本題考查了直線與圓的位置關系,圓周角定理,熟練掌握切線的判定定理是解題的關鍵.25、(1)(0≤t≤4);(2)t1=2,t2=;(2)經過點D的雙曲線(k≠0)的k值不變,為.【分析】(1)過點P作PE⊥BC于點E,由點P,Q的出發(fā)點、速度及方向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論