2022-2023學年山東省濟寧市汶上縣數(shù)學九上期末統(tǒng)考模擬試題含解析_第1頁
2022-2023學年山東省濟寧市汶上縣數(shù)學九上期末統(tǒng)考模擬試題含解析_第2頁
2022-2023學年山東省濟寧市汶上縣數(shù)學九上期末統(tǒng)考模擬試題含解析_第3頁
2022-2023學年山東省濟寧市汶上縣數(shù)學九上期末統(tǒng)考模擬試題含解析_第4頁
2022-2023學年山東省濟寧市汶上縣數(shù)學九上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,已知矩形ABCD,AB=6,BC=10,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為()A.6 B.7 C.8 D.92.已知函數(shù)的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠33.我們知道,一元二次方程可以用配方法、因式分解法或求根公式進行求解.對于一元三次方程ax3+bx2+cx+d=0(a,b,c,d為常數(shù),且a≠0)也可以通過因式分解、換元等方法,使三次方程“降次”為二次方程或一次程,進而求解.這兒的“降次”所體現(xiàn)的數(shù)學思想是()A.轉化思想 B.分類討論思想C.數(shù)形結合思想 D.公理化思想4.下列立體圖形中,主視圖是三角形的是(

).A. B. C. D.5.如圖,滑雪場有一坡角α為20°的滑雪道,滑雪道AC的長為200米,則滑雪道的坡頂?shù)狡碌状怪备叨華B的長為()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°7.已知二次函數(shù)y=ax2+bx+c(a≠0),當x=1時,函數(shù)y有最大值,設(x1,y1),(x2,y2)是這個函數(shù)圖象上的兩點,且1<x1<x2,那么()A.a(chǎn)>0,y1>y2B.a(chǎn)>0,y1<y2C.a(chǎn)<0,y1>y2D.a(chǎn)<0,y1<y28.二次函數(shù)y=﹣x2+2x﹣4,當﹣1<x<2時,y的取值范圍是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣39.如圖,在平面直角坐標系中,與軸相切于點,為的直徑,點在函數(shù)的圖象上,若的面積為,則的值為()

A.5 B. C.10 D.1510.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定11.有一組數(shù)據(jù)5,3,5,6,7,這組數(shù)據(jù)的眾數(shù)為()A.3 B.6 C.5 D.712.如圖,太陽在A時測得某樹(垂直于地面)的影長ED=2米,B時又測得該樹的影長CD=8米,若兩次日照的光線PE⊥PC交于點P,則樹的高度為PD為()A.3米 B.4米 C.4.2米 D.4.8米二、填空題(每題4分,共24分)13.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2020的值為_____.14.已知反比例函數(shù),當_______時,其圖象在每個象限內隨的增大而增大.15.在一個不透明的盒子中裝有a個除顏色外完全相同的球,其中只有6個白球.若每次將球充分攪勻后,任意摸出1個球記下顏色后再放回盒子,通過大量重復試驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在20%左右,則a的值約為_____.16.如圖,在平面直角坐標系中,已知A(1.5,0),D(4.5,0),△ABC與△DEF位似,原點O是位似中心.若DE=7.5,則AB=_____.17.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

18.一枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù),張兵同學擲一次骰子,骰子向上的一面出現(xiàn)的點數(shù)是3的倍數(shù)的概率是_____.三、解答題(共78分)19.(8分)如圖,已知拋物線y1=﹣x2+x+2與x軸交于A、B兩點,與y軸交于點C,直線l是拋物線的對稱軸,一次函數(shù)y2=kx+b經(jīng)過B、C兩點,連接AC.(1)△ABC是三角形;(2)設點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;(3)結合圖象,寫出滿足y1>y2時,x的取值范圍.20.(8分)如圖,在平面直角坐標系中,拋物線與軸交于,兩點,與軸交于點,直線經(jīng)過,兩點,拋物線的頂點為,對稱軸與軸交于點.(1)求此拋物線的解析式;(2)求的面積;(3)在拋物線上是否存在一點,使它到軸的距離為4,若存在,請求出點的坐標,若不存在,則說明理由.21.(8分)如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BC相交于點N.連接BM,DN.(1)求證:四邊形BMDN是菱形;(2)若AB=4,AD=8,求MD的長.22.(10分)如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD(1)猜想AC與⊙O的位置關系,并證明你的猜想;(2)試判斷四邊形BOCD的形狀,并證明你的判斷;(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.23.(10分)解方程:x2-4x-7=0.24.(10分)如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點O為圓心,OB為半徑作⊙O,交AC于點E,交AB于點D,且∠BEC=∠BDE.(1)求證:AC是⊙O的切線;(2)連接OC交BE于點F,若,求的值.25.(12分)如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.(1)求證:四邊形OCED是矩形;(2)若CE=1,DE=2,ABCD的面積是.26.拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.(1)求此拋物線的解析式;(2)已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;(3)在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、B【分析】延長AF交DC于Q點,由矩形的性質得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面積:△QDI的面積=1:16,根據(jù)三角形的面積公式即可得出結果.【詳解】延長AF交DC于Q點,如圖所示:∵E,F(xiàn)分別是AB,BC的中點,∴AE=AB=3,BF=CF=BC=5,∵四邊形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面積:△QDI的面積=()2=,∵AD=10,∴△AEI中AE邊上的高=2,∴△AEI的面積=×3×2=3,∵△ABF的面積=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面積=×2×5=5,∴四邊形BEIH的面積=△ABF的面積﹣△AEI的面積﹣△BFH的面積=15﹣3﹣5=1.故選:B.【點睛】本題考查了矩形的性質、相似三角形的判定與性質、三角形面積的計算;熟練掌握矩形的性質,證明三角形相似是解決問題的關鍵.2、B【解析】試題分析:若此函數(shù)與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點:函數(shù)圖像與x軸交點的特點.3、A【分析】解高次方程的一般思路是逐步降次,所體現(xiàn)的數(shù)學思想就是轉化思想.【詳解】由題意可知,解一元三次方程的過程是將三次轉化為二次,二次轉化為一次,從而解題,在解題技巧上是降次,在解題思想上是轉化思想.故選:A.【點睛】本題考查高次方程;通過題意,能夠從中提取出解高次方程的一般方法,同時結合解題過程分析出所運用的解題思想是解題的關鍵.4、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖.【詳解】A、C、D主視圖是矩形,故A、C、D不符合題意;B、主視圖是三角形,故B正確;故選B.【點睛】本題考查了簡單幾何體的三視圖,圓錐的主視圖是三角形.5、C【解析】解:∵sin∠C=,∴AB=AC?sin∠C=200sin20°.故選C.6、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.【點睛】本題考查圓周角定理、切線的性質、三角形內角和定理,解題的關鍵是求出∠AOP的度數(shù).7、C【解析】由當x=2時,函數(shù)y有最大值,根據(jù)拋物線的性質得a<0,拋物線的對稱軸為直線x=2,當x>2時,y隨x的增大而減小,所以由2<x2<x2得到y(tǒng)2>y2.【詳解】∵當x=2時,函數(shù)y有最大值,∴a<0,拋物線的對稱軸為直線x=2.∵2<x2<x2,∴y2>y2.故選C.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上的點滿足其解析式.也考查了二次函數(shù)的性質.8、B【分析】先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性求出最小值和最大值即可.【詳解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函數(shù)的對稱軸為直線x=1,∴﹣1<x<2時,x=1取得最大值為﹣1,x=﹣1時取得最小值為﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范圍是﹣7<y≤﹣1.故選:B.【點睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的增減性和對稱性,確定出對稱軸從而判斷出取得最大值和最小值的情況是解題的關鍵.9、C【分析】首先設點C坐標為,根據(jù)反比例函數(shù)的性質得出,然后利用圓的切線性質和三角形OAB面積構建等式,即可得解.【詳解】設點C坐標為,則∵與軸相切于點,∴CB⊥OB∵的面積為∴,即∵為的直徑∴BC=2AB∴故選:C.【點睛】此題主要考查圓的切線性質以及反比例函數(shù)的性質,熟練掌握,即可解題.10、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關鍵.11、C【分析】根據(jù)眾數(shù)的概念求解.【詳解】這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,出現(xiàn)了2次,則眾數(shù)為1.故選:C.【點睛】本題考查了眾數(shù)的概念:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).12、B【分析】根據(jù)題意求出△PDE和△FDP相似,根據(jù)相似三角形對應邊成比例可得=,然后代入數(shù)據(jù)進行計算即可得解.【詳解】∵PE⊥PC,∴∠E+∠C=90°,∠E+∠EPD=90°,∴∠EPD=∠C,又∵∠PDE=∠FDP=90°,∴△PDE∽△FDP,∴=,由題意得,DE=2,DC=8,∴=,解得PD=4,即這顆樹的高度為4米.故選:B.【點睛】本題通過投影的知識結合三角形的相似,求解高的大??;是平行投影性質在實際生活中的應用.二、填空題(每題4分,共24分)13、1【分析】根據(jù)一元二次方程的解的定義即可求出答案.【詳解】解:由題意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=1.故答案為:1.【點睛】本題考查一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義,本題屬于基礎題型.14、【分析】根據(jù)反比例函數(shù)的性質求出m的取值范圍即可.【詳解】∵反比例函數(shù)在每個象限內隨的增大而增大∴解得故答案為:.【點睛】本題考查了反比例函數(shù)的問題,掌握反比例函數(shù)的性質是解題的關鍵.15、1.【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在20%左右得到比例關系,列出方程求解即可.【詳解】由題意可得,×100%=20%,解得,a=1.故答案為1.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.16、2.1.【分析】利用以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k得到位似比為,然后根據(jù)相似的性質計算AB的長.【詳解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC與△DEF位似,原點O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案為2.1.【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.17、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉化,通過,與相似.這時,柳暗花明,迎刃而解.18、1【分析】共有6種等可能的結果數(shù),其中點數(shù)是3的倍數(shù)有3和6,從而利用概率公式可求出向上的一面出現(xiàn)的點數(shù)是3的倍數(shù)的概率.【詳解】解:擲一次骰子,向上的一面出現(xiàn)的點數(shù)是3的倍數(shù)的有3,6,故骰子向上的一面出現(xiàn)的點數(shù)是3的倍數(shù)的概率是:26故答案為13【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù).三、解答題(共78分)19、(1)直角;(2)P(,);(3)0<x<1.【分析】(1)求出點A、B、C的坐標分別為:(-1,0)、(1,0)、(0,2),則AB2=25,AC2=5,BC2=20,即可求解;(2)點A關于函數(shù)對稱軸的對稱點為點B,則直線BC與對稱軸的交點即為點P,即可求解;(3)由圖象可得:y1>y2時,x的取值范圍為:0<x<1.【詳解】解:(1)當x=0時,y1=0+0+2=2,當y=0時,﹣x2+x+2=0,解得x1=-1,x2=1,∴點A、B、C的坐標分別為:(﹣1,0)、(1,0)、(0,2),則AB2=25,AC2=5,BC2=20,故AB2=AC2+BC2,故答案為:直角;(2)將點B、C的坐標代入一次函數(shù)表達式:y=kx+b得:,解得,∴直線BC的表達式為:y=﹣x+2,拋物線的對稱軸為直線:x=,點A關于函數(shù)對稱軸的對稱點為點B,則直線BC與對稱軸的交點即為點P,當x=時,y=×+2=,故點P(,);(3)由圖象可得:y1>y2時,x的取值范圍為:0<x<1,故答案為:0<x<1.【點睛】本題考查了二次函數(shù)與坐標軸的交點,待定系數(shù)法求一次函數(shù)解析式,軸對稱最短的性質,勾股定理及其逆定理,以及利用圖像解不等式等知識,本題難度不大.20、(1)y=﹣x2+x+2;(2);(3)存在一點P或,使它到x軸的距離為1【分析】(1)先根據(jù)一次函數(shù)的解析式求出A和C的坐標,再將點A和點C的坐標代入二次函數(shù)解析式即可得出答案;(2)先求出頂點D的坐標,再過D點作DM平行于y軸交AC于M,再分別以DM為底求△ADM和△DCM的面積,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【詳解】解:(1)直線y=﹣x+2中,當x=0時,y=2;當y=0時,0=﹣x+2,解得x=1∴點A、C的坐標分別為(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故拋物線的表達式為:y=﹣x2+x+2;(2)y=﹣x2+x+2∴拋物線的頂點D的坐標為,如圖1,設直線AC與拋物線的對稱軸交于點M直線y=﹣x+2中,當x=時,y=點M的坐標為,則DM=∴△DAC的面積為=;(3)當P到x軸的距離為1時,則①當y=1時,﹣x2+x+2=1,而,所以方程沒有實數(shù)根②當y=-1時,﹣x2+x+2=-1,解得則點P的坐標為或;綜上,存在一點P或,使它到x軸的距離為1.【點睛】本題考查的是二次函數(shù),難度適中,需要熟練掌握“鉛垂高、水平寬”的方法來求面積.21、(1)證明見解析;(2)MD長為1.【分析】(1)利用矩形性質,證明BMDN是平行四邊形,再結合MN⊥BD,證明BMDN是菱形.(2)利用BMDN是菱形,得BM=DM,設,則,在中使用勾股定理計算即可.【詳解】(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵BD的垂直平分線MN∴BO=DO,∵在△DMO和△BNO中∠MDO=∠NBO,BO=DO,∠MOD=∠NOB∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四邊形BMDN是平行四邊形,∵MN⊥BD∴BMDN是菱形(2)∵四邊形BMDN是菱形,∴MB=MD,設MD=x,則MB=DM=x,AM=(8-x)在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=1答:MD長為1.【點睛】本題考查了矩形的性質,菱形的性質,及勾股定理,熟練使用以上知識是解題的關鍵.22、(1)猜想:AC與⊙O相切;(2)四邊形BOCD為菱形;(3)【解析】(1)根據(jù)等腰三角形的性質得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根據(jù)切線的判定定理即可得到,AC是⊙O的切線;(2)連結OD,由CD∥AB得到∠AOC=∠OCD,根據(jù)三角形外角性質得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判斷△OCD為等邊三角形,則CD=OB=OC,先可判斷四邊形OBDC為平行四邊形,加上OB=OC,于是可判斷四邊形BOCD為菱形;(3)在Rt△AOC中,根據(jù)含30度的直角三角形三邊的關系得到OC=,再根據(jù)弧長公式計算出弧BC的弧長=然后根據(jù)圓錐的計算求圓錐的底面圓半徑.【詳解】(1)AC與⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半徑,∴AC與⊙O相切.(2)四邊形BOCD是菱形連接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等邊三角形,,∴四邊形BOCD是平行四邊形,∴四邊形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧長∴底面圓半徑【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的判定方法和圓錐的計算.23、【解析】x2-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)2-4×1×(-7)=44>0,∴x=,∴.24、(1)證明見解析;(2)【解析】試題分析:(1)連接OE,證得OE⊥AC即可確定AC是切線;

(2)根據(jù)OE∥BC,分別得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形對應邊的比相等找到中間比即可求解.試題解析:解:(1)連接OE.∵OB=OE,∴∠OBE=∠OEB.∵∠ACB=90°,∴∠CBE+∠BEC=90°.∵BD為⊙O的直徑,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC為⊙O的切線.(2)∵OE∥BC,∴△AOE∽△ABC,∴OE:BC=AE:AC.∵CE:AE=2:3,∴AE:AC=3:1,∴OE:BC=3:1.∵OE∥BC,∴△OEF∽△CBF,∴.點睛:本題考查了切線的判定,在解決切線問題時,常常連接圓心和切點,證明垂直或根據(jù)切線得到垂直.25、(1)證明見解析;(2)1.【解析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論