




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
普通高中數(shù)學課程標準(實驗稿)普通高中數(shù)學課程標準研制組2023年11月第一部分前言數(shù)學是研究空間形式和數(shù)量關(guān)系的科學,也是研究模式與秩序的科學。數(shù)學是描述、探索自然和社會規(guī)律的科學語言和研究工具,數(shù)學科學是自然科學、技術(shù)科學等科學的基礎(chǔ),并在經(jīng)濟科學、社會科學、人文科學的發(fā)展中發(fā)揮越來越大的作用。數(shù)學的應(yīng)用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術(shù)的結(jié)合在許多方面直接為社會發(fā)明價值,推動著社會生產(chǎn)力的發(fā)展。數(shù)學在形成人類理性思維和促進個人智力發(fā)展的過程中發(fā)揮著獨特的、不可替代的作用。數(shù)學是人類文化的重要組成部分,數(shù)學素質(zhì)已成為公民所必須具有的一種基本素質(zhì)。數(shù)學教育應(yīng)當體現(xiàn)數(shù)學的價值和特點,并把當今數(shù)學發(fā)展所體現(xiàn)的理念適本地反映到新的高中數(shù)學課程中。一、課程性質(zhì)高中數(shù)學課程是義務(wù)教育后普通高級中學的一門重要課程。它是參與社會生產(chǎn)、解決平常生活的基礎(chǔ),也是學習高中物理、化學、技術(shù)等課程和進一步學習的基礎(chǔ),對于結(jié)識數(shù)學的科學和文化價值,形成理性思維、發(fā)展智力,培養(yǎng)學生的創(chuàng)新意識和應(yīng)用意識有積極作用。高中數(shù)學課程有助于培養(yǎng)學生抽取事物的數(shù)、形屬性的敏銳意識,運用抽象模式、結(jié)構(gòu)研究事物的思維方式,借助符號和邏輯系統(tǒng)進行嚴密演繹的探索習性;可以對學生進行美感熏陶,培養(yǎng)學生的審美意識;為學生的終生發(fā)展,形成科學的世界觀、價值觀奠定基礎(chǔ),對提高全民族素質(zhì)具有重要作用。二、課程的基本理念通過國際比較,剖析我國數(shù)學教育發(fā)展的歷史與現(xiàn)狀,從時代需求、國民素質(zhì)、個性發(fā)展、全球意識等各個方面綜合思考,形成了《普通高中數(shù)學課程標準》(以下簡稱《標準》)的基本理念。1.構(gòu)建共同基礎(chǔ),提供發(fā)展平臺高中教育屬于基礎(chǔ)教育。高中數(shù)學課程應(yīng)具有基礎(chǔ)性,它涉及兩方面的含義:一.在義務(wù)教育階段之后,為我國公民適應(yīng)現(xiàn)代生活和未來發(fā)展提供更高水平的數(shù)學基礎(chǔ),使他們獲得更高的數(shù)學素養(yǎng);二.為進入高一級學校的學生提供必要的數(shù)學準備。高中數(shù)學課程由必修課程和選修課程組成,必修課程應(yīng)當滿足所有學生共同的數(shù)學需求;為有不同需求的學生提供了選修課程,它仍然應(yīng)是學生發(fā)展所需要的基礎(chǔ)性數(shù)學課程。2.提供多樣課程,適應(yīng)個性選擇與義務(wù)教育階段不同,高中數(shù)學課程應(yīng)具有多樣性與選擇性,使不同的學生在數(shù)學上得到不同的發(fā)展。《標準》應(yīng)為學生提供多層次、多種類的選擇,以促進學生的個性發(fā)展和對未來人生規(guī)劃的思考?!稑藴省窇?yīng)為學生提供選擇和發(fā)展的空間,學生可以在適當?shù)闹笇逻M行自主選擇,初步選擇以后還可以進行適當?shù)霓D(zhuǎn)換、調(diào)整。同時,高中數(shù)學課程也應(yīng)給學校和教師留有一定的選擇空間,他們可以根據(jù)自身的條件和學生的基本需求,制定課程發(fā)展計劃,不斷地豐富和完善供學生選擇的課程。3.有助于形成積極積極、敢于探索的學習方式學生對數(shù)學概念、結(jié)論、技能的學習不應(yīng)只限于接受、記憶、模仿和練習,《標準》還提倡自主探索、動手實踐、合作交流、閱讀自學等學習數(shù)學的方式。這些方式有助于發(fā)揮學生學習的主觀能動性,使學生的學習過程成為在教師引導下的“再發(fā)明”過程。同時,《標準》設(shè)立“數(shù)學探究”、“數(shù)學建?!钡葘W習活動,進一步為學生形成積極積極的、多樣的學習方式發(fā)明有利的條件,以激發(fā)學生的數(shù)學學習愛好,鼓勵學生在學習過程中,養(yǎng)成獨立思考、積極探索的習慣,發(fā)展創(chuàng)新意識。4.有助于提高學生的數(shù)學思維能力提高學生的數(shù)學思維能力是數(shù)學教育的基本目的之一。人們在學習數(shù)學和運用數(shù)學解決問題時,不斷地經(jīng)歷直觀感知、觀測發(fā)現(xiàn)、歸納類比、空間想象、抽象概括、符號表達、運算求解、演繹證明、反思建構(gòu)等思維過程。這些過程是數(shù)學思維能力的具體體現(xiàn),它們有助于學生對客觀事物中蘊涵的數(shù)學模式做出思考和判斷,數(shù)學思維能力在形成理性思維能力中發(fā)揮著獨特的作用,有助于學生不迷信權(quán)威、不感情用事、不模糊馬虎?!稑藴省纷允贾两K力求體現(xiàn)有助于提高學生數(shù)學思維能力這一基本理念。5.發(fā)展學生的數(shù)學應(yīng)用意識20世紀下半葉以來,數(shù)學應(yīng)用的巨大發(fā)展是數(shù)學發(fā)展的顯著特性之一。當今知識經(jīng)濟時代,數(shù)學正在從幕后走向臺前,數(shù)學和計算機技術(shù)的結(jié)合使得數(shù)學可以在許多方面直接為社會發(fā)明價值,同時,也為數(shù)學發(fā)展開拓了廣闊的前景。我國的數(shù)學教育(涉及大學數(shù)學教育)在很長一段時間里對于數(shù)學與實際的聯(lián)系未能給予充足的重視,因此,高中數(shù)學在數(shù)學應(yīng)用和聯(lián)系實際方面需要大力加強。近幾年來,我國大學、中學數(shù)學建模的實踐表白,開展數(shù)學應(yīng)用的教學活動符合社會需要,有助于激發(fā)學生學習數(shù)學的愛好,有助于增強學生的應(yīng)用意識。高中數(shù)學課程應(yīng)提供一些基本內(nèi)容的實際背景,反映數(shù)學的應(yīng)用價值,開展“數(shù)學建?!钡膶W習活動,設(shè)立數(shù)學應(yīng)用的專題課程。《標準》力求使學生體驗數(shù)學在解決實際問題中的作用、數(shù)學與平常生活及其他學科的聯(lián)系,感受數(shù)學的實用價值,促進學生逐步形成和發(fā)展數(shù)學應(yīng)用意識,提高實踐能力。6.用發(fā)展的眼光結(jié)識“雙基”我國數(shù)學教學具有重視基礎(chǔ)知識教學、基本技能訓練和能力培養(yǎng)的傳統(tǒng),新世紀的高中數(shù)學課程應(yīng)發(fā)揚這種傳統(tǒng)。與此同時,隨著時代的發(fā)展,特別是數(shù)學的廣泛應(yīng)用和現(xiàn)代信息技術(shù)的發(fā)展對社會各個領(lǐng)域的影響,數(shù)學課程設(shè)立和實行應(yīng)重新審閱基礎(chǔ)知識、基本技能和能力的內(nèi)涵,形成符合時代規(guī)定的新的“雙基”。例如,為了適應(yīng)信息時代發(fā)展的需要,高中數(shù)學課程應(yīng)增長算法的內(nèi)容,把最基本的數(shù)據(jù)解決、記錄知識作為新的數(shù)學基礎(chǔ)知識和基本技能。同時,應(yīng)刪減繁瑣計算、人為技巧化的難題和枝微末節(jié)的內(nèi)容。7.返璞歸真,注意適度的形式化形式化是數(shù)學的基本特性之一。在數(shù)學教學中,學習形式化的表達是一項基本規(guī)定。但是,數(shù)學教學不能過度地形式化,否則會將生動活潑的數(shù)學思維活動淹沒在形式化的海洋里。數(shù)學的現(xiàn)代發(fā)展也表白,全盤形式化是不也許的。因此,數(shù)學教學應(yīng)當“返璞歸真”,根據(jù)不同教學內(nèi)容的規(guī)定,努力揭示數(shù)學的本質(zhì)。數(shù)學課程“要講推理,更要講道理”,通過典型例子的分析和學生自主探索活動,使學生理解數(shù)學概念、結(jié)論的形成過程,體會蘊涵在其中的思想方法,追尋數(shù)學發(fā)展的歷史足跡,把數(shù)學的學術(shù)形態(tài)轉(zhuǎn)化為學生易于接受的教育形態(tài)。8.體現(xiàn)數(shù)學的文化價值數(shù)學是人類文化的重要組成部分,不同的民族有不同的數(shù)學傳統(tǒng)。數(shù)學課程應(yīng)適當介紹數(shù)學的歷史、應(yīng)用和發(fā)展趨勢;數(shù)學對推動社會發(fā)展的作用;數(shù)學的社會需求;社會發(fā)展對數(shù)學發(fā)展的推動作用;數(shù)學科學的思想體系;數(shù)學的美學價值;數(shù)學家的創(chuàng)新精神。數(shù)學課程應(yīng)幫助學生了解數(shù)學在人類文明發(fā)展中的作用;逐步形成對的的數(shù)學觀。為此,《標準》提倡在高中數(shù)學課程內(nèi)容中體現(xiàn)數(shù)學的文化價值,并在適當?shù)膬?nèi)容中提出對“數(shù)學文化”的學習規(guī)定,設(shè)立“數(shù)學史選講”、“現(xiàn)實社會中的數(shù)學”等專題選修課程。9.注重信息技術(shù)與數(shù)學課程的整合現(xiàn)代信息技術(shù)的廣泛應(yīng)用正在對數(shù)學課程內(nèi)容、數(shù)學教學、數(shù)學學習等產(chǎn)生深刻的影響?!稑藴省诽岢珜崿F(xiàn)信息技術(shù)與課程內(nèi)容的有機整合,注意把算法融入到數(shù)學課程的各個相關(guān)部分。提倡運用信息技術(shù)來呈現(xiàn)以往教學中難以呈現(xiàn)的課程內(nèi)容,盡也許使用科學型計算器、各種數(shù)學教育技術(shù)平臺,加強數(shù)學教學與信息技術(shù)的結(jié)合。鼓勵學生運用計算機、計算器等進行探索和發(fā)現(xiàn)。。10.建立合理、科學的評價機制數(shù)學課程的重大改變必將引起評價體系的深刻變化,評價改革應(yīng)當與數(shù)學課程改革同步進行,涉及評價理念、評價體制、評價內(nèi)容、評價形式的改革。評價應(yīng)在公平、公正的原則下,既要關(guān)注學生學習的結(jié)果,也要關(guān)注他們學習的過程;既要關(guān)注學生數(shù)學學習的水平,也要關(guān)注他們在數(shù)學活動中所表現(xiàn)出來的情感態(tài)度的變化。評價應(yīng)建立多元化的目的,關(guān)注學生個性與潛能的發(fā)展。例如,過程性評價應(yīng)關(guān)注對學生理解數(shù)學概念、數(shù)學思想等過程的評價,關(guān)注對學生提出、分析、解決問題等過程的評價,特別對于數(shù)學建模、數(shù)學探究等學習活動,建立相應(yīng)的過程評價內(nèi)容和方法。評價的改革是這次基礎(chǔ)教育改革的重要組成部分,應(yīng)進一步解放思想,創(chuàng)建適合高中課程改革需要的新的評價制度。三、課程設(shè)計思緒在《標準》制定的過程中,力求將數(shù)學課程改革的基本理念與課程框架設(shè)計、課程內(nèi)容擬定、課程實行建議有機地結(jié)合起來。高中數(shù)學課程框架1.課程框架高中數(shù)學課程由6個系列課程構(gòu)成,分別是A,B,C,D,E,F(xiàn)系列。A,B,C系列由若干個模塊組成,每個模塊2個學分(36學時);D,E,F(xiàn)系列由專題組成,每個專題1學分(18學時),每2個專題組成1個模塊。課程結(jié)構(gòu)如圖所示:F1F2???FF1F2???F10E2E1E3E4D1D3D2D4A1A2A3A4A5B2B1C3C2C1注:上圖中代表模塊;代表專題,其中2個專題組成1個模塊。6個系列的高中數(shù)學課程分為必修課程和選修課程兩部分。2.必修課程必修課程是每個學生都必須學習的數(shù)學內(nèi)容,涉及A1,A2,A3,A4,A5五個模塊。A1:集合、函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù));A2:空間幾何初步、解析幾何初步;A3:算法初步、記錄、概率;A4:基本初等函數(shù)II(三角函數(shù))、解三角形、數(shù)列;A5:平面向量、三角恒等變換、不等式。3.選修課程對于選修課程,學生可以根據(jù)自己的愛好和對未來發(fā)展的愿望進行選擇。選修課程由B,C,D,E,F(xiàn)系列課程組成?!鬊系列課程:由B1,B2兩個模塊組成。B1:常用邏輯用語、圓錐曲線與方程、導數(shù)及其應(yīng)用;B2:記錄案例、推理與證明、數(shù)系擴充與復(fù)數(shù)的引入、框圖?!鬋系列課程:由C1,C2,C3三個模塊組成。C1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何;C2:導數(shù)及其應(yīng)用、數(shù)系的擴充與復(fù)數(shù)的引入;C3:計數(shù)原理、記錄、概率?!鬌系列課程(文化系列課程):由D1,D2,D3,D4等4個專題組成。D1:數(shù)學史選講;D2:現(xiàn)實社會中的數(shù)學;D3:中學數(shù)學思想方法;D4:數(shù)學問題集錦?!鬍系列課程(應(yīng)用系列課程):由E1,E2,E3,E4等4個專題組成。E1:優(yōu)選法與實驗設(shè)計;E2:統(tǒng)籌法與圖論;E3:風險與決策;E4:數(shù)字電路設(shè)計與代數(shù)運算?!鬎系列課程(拓展系列課程):由F1,F(xiàn)2,F(xiàn)3,F(xiàn)4,F(xiàn)5,F(xiàn)6,F(xiàn)7,F(xiàn)8,F(xiàn)9,F(xiàn)10等10個專題組成。F1:幾何證明;F2:不等式;F3:參數(shù)方程與極坐標;F4:矩陣與變換;F5:數(shù)列與差分;F6:尺規(guī)作圖與數(shù)域擴充;F7:歐拉公式與閉曲面分類;F8:初等數(shù)論初步;F9:對稱變換與群;F10:球面幾何與非歐幾何。4.關(guān)于課程設(shè)立的說明◆課程設(shè)立的原則與意圖必修課程內(nèi)容擬定的原則是:滿足未來公民的基本數(shù)學需求;為學生進一步的學習提供必要的數(shù)學準備。選修課程內(nèi)容擬定的原則是:為學生進一步學習、獲得較高數(shù)學修養(yǎng)奠定基礎(chǔ);滿足學生的愛好和對未來發(fā)展的愿望。B系列課程是為那些希望在人文、社會科學等方面發(fā)展的學生而設(shè)立的,C系列課程則是為那些希望在理工、經(jīng)濟等方面發(fā)展的學生設(shè)立的。B,C系列是選修課中的基礎(chǔ)性內(nèi)容。D系列課程是數(shù)學文化系列課程。是為擴展學生的數(shù)學視野,提高學生對數(shù)學文化價值的結(jié)識,并借此向社會普及數(shù)學科學而設(shè)計的。E,F(xiàn)系列選修課程是為對數(shù)學有愛好和希望進一步提高數(shù)學素養(yǎng)的學生設(shè)計的,所涉及的內(nèi)容都是數(shù)學的基礎(chǔ)性內(nèi)容。D,E,F(xiàn)系列課程中的專題此后還將逐步地予以擴充。對于D,E,F(xiàn)系列課程,學生可根據(jù)自己的愛好、志向自由選擇。◆設(shè)立了數(shù)學建模、數(shù)學探究、數(shù)學文化內(nèi)容具體規(guī)定如下:高中數(shù)學課程規(guī)定把數(shù)學探究、數(shù)學建模的思想滲透在各模塊內(nèi)容之中,并在高中階段至少安排一次數(shù)學建模、一次數(shù)學探究活動。高中數(shù)學課程規(guī)定把數(shù)學文化內(nèi)容與各模塊的內(nèi)容有機結(jié)合?!裟K的邏輯順序(1)A系列課程是B,C系列課程的基礎(chǔ)。D,E,F(xiàn)系列課程不依賴于其他系列的課程,可以與其他系列課程同時開設(shè),這些專題的開設(shè)可以不考慮先后順序。(2)A系列課程中,A1是A2,A3,A4和A5的基礎(chǔ),A2,A3,A4和A5的開設(shè)可以不考慮先后順序;(3)在A系列課程的基礎(chǔ)上,可分別學習B,C兩個系列的課程。B系列課程依B1,B2順序開設(shè)。C系列課程中,C1是C2和C3的基礎(chǔ),C2和C3的開設(shè)可以不考慮先后順序?!粽n程資源的建設(shè)與開發(fā)學校應(yīng)一方面保證A,B,C系列課程的開設(shè)和質(zhì)量。對于D,E,F(xiàn)系列課程中的專題,在滿足學生基本選擇需求的前提下,可以根據(jù)學校自身的情況逐步豐富和完善,教師也可以自身的條件制定在開設(shè)課程方面?zhèn)€人發(fā)展計劃。鼓勵學校開放辦學,開發(fā)校外課程資源。學生的6種最基本的選擇和課程組合的基本建議學生的志向與自身條件不同,不同高校、不同專業(yè)對學生數(shù)學方面的規(guī)定也不同,甚至同一專業(yè)對學生數(shù)學方面的規(guī)定也不一定相同。據(jù)此,學生可以選擇不同的課程組合。課程組合的基本建議如下:(1)學生完畢10學分的必修課,即可達成高中畢業(yè)的最低數(shù)學規(guī)定。他們還可以任意選修其它的數(shù)學課程。(2)學生完畢10學分的必修課,在選修課程中任選1個模塊獲得2學分,即可達成高職、藝術(shù)、體育類的高等院校的數(shù)學規(guī)定。(3)學生完畢10學分的必修課,在選修課程中選修B1,B2,獲得4學分,在其他選修課程中選修1個模塊獲得2學分,總共取得16個學分,即可達成人文社會科學類高等院校的數(shù)學規(guī)定。(4)對數(shù)學有愛好、并希望獲得較高數(shù)學素養(yǎng)的學生,可在(3)的基礎(chǔ)上,在E,F(xiàn)系列中選修2個模塊獲得4學分,總共取得20個學分,通過考試可成為升學或其他需要的依據(jù)和參考。(5)學生完畢10學分的必修課,在選修課程中選修C1,C2,C3,獲得6學分,在其他選修系列課程中選修1個模塊(兩個專題)獲得2學分,此外在E,F(xiàn)系列中選修1個模塊(兩個專題)獲得2學分,總共取得20個學分,即可達成理工、經(jīng)濟類高等院校的數(shù)學規(guī)定。(6)對數(shù)學有愛好、并希望獲得較高數(shù)學素養(yǎng)的學生,可在(5)的基礎(chǔ)上,再在E,F(xiàn)系列中選修2個模塊(4個專題)獲得4學分,總共取得24個學分,通過考試可成為升學或其他需要的依據(jù)和參考。課程的組合具有一定的靈活性,不同的組合可以互相轉(zhuǎn)換。學生做出選擇之后,可以根據(jù)自己的意愿和條件向?qū)W校申請調(diào)整,通過測試獲得相應(yīng)的學分即可轉(zhuǎn)換?!稑藴省分惺褂玫闹匾袨閯釉~本《標準》的目的規(guī)定涉及知識技能、過程與方法、情感態(tài)度價值觀三個方面,所涉及的行為動詞水平大體分類如下。目的領(lǐng)域水平行為動詞知識與技能知道/了解/模仿了解,體會,知道,感知,結(jié)識,初步了解,初步體會,初步學會,初步理解,求(簡樸的)理解/獨立操作描述,描繪,說明,表達,表述,表達,刻畫,解釋,推測,想象,理解,歸納,總結(jié),抽象(出),提取,比較,對比,辨認,鑒定,判斷,會求,能,運用,初步應(yīng)用,(簡樸的)應(yīng)用,初步討論掌握/應(yīng)用/遷移掌握,導出,分析,推導,證明,研究,討論,選擇,決策,解決問題過程與方法經(jīng)歷,觀測,感知,操作,查閱,借助(工具),模仿,分析實例,設(shè)計(問卷、裝置),收集(數(shù)據(jù)),回顧,復(fù)習,梳理,整理,合作,參與,實驗,交流,分析(實例),發(fā)現(xiàn),嘗試,研究,探索,探究,解決(問題)情感態(tài)度與價值觀反映/認同感受,結(jié)識,了解,初步體會,體會(價值),領(lǐng)悟/內(nèi)化獲得,提高,增強,形成,養(yǎng)成,樹立,發(fā)揮(想象力),發(fā)展,
第二部分課程目的高中數(shù)學課程的總目的是:在9年義務(wù)教育數(shù)學課程的基礎(chǔ)上,使學生獲得作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目的如下:1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解它們產(chǎn)生的背景、應(yīng)用和在后繼學習中的作用,體會其中的數(shù)學思想和方法;2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)解決等基本能力;3.在以上基本能力基礎(chǔ)上,初步形成數(shù)學地提出、分析和解決問題的能力,數(shù)學表達和交流的能力,逐步地發(fā)展獨立獲取數(shù)學知識的能力;4.發(fā)展數(shù)學應(yīng)用意識和創(chuàng)新意識力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式做出思考和判斷;5.提高學習數(shù)學的愛好,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度;6.具有一定的數(shù)學視野,初步結(jié)識數(shù)學的應(yīng)用價值、科學價值和文化價值,逐步形成批判性的思維習慣,崇尚數(shù)學的理性精神,從而進一步樹立辯證唯物主義世界觀。
第三部分內(nèi)容標準一、必修課程必修課程是整個高中數(shù)學課程基礎(chǔ),涉及5個模塊,共10學分,是所有學生都要學習的內(nèi)容。它的內(nèi)容的擬定遵循兩個原則:一是滿足未來公民的基本數(shù)學需求,二是為學生進一步的學習提供必要的數(shù)學準備。5個模塊的內(nèi)容為:A1:集合、函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù));A2:空間幾何初步、平面解析幾何初步;A3:算法、記錄、概率;A4:基本初等函數(shù)II(三角函數(shù))、解三角形、數(shù)列;A5:平面向量、三角恒等變換、不等式。A1是學習這五個模塊的基礎(chǔ),其他各個模塊的教學順序,以及數(shù)學知識之間的局部交叉,應(yīng)考慮數(shù)學知識的內(nèi)在聯(lián)系,視實際教學情況,可以進行合理的調(diào)整與安排。必修課程的呈現(xiàn)力求展現(xiàn)由具體到抽象的過程,努力體現(xiàn)數(shù)學知識中蘊涵的基本思想方法,體現(xiàn)數(shù)學知識的發(fā)生過程和實際應(yīng)用,而不在技巧、難度上做過高的規(guī)定,要保證基本知識的掌握與基本技能的形成。A1在本模塊中,學生將學習集合、函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))。集合論是德國數(shù)學家康托在19世紀末創(chuàng)建的,集合語言是現(xiàn)代數(shù)學的基本語言,使用集合語言,可以簡潔、準確地表達數(shù)學的一些內(nèi)容。高中數(shù)學課程只將集合作為一種語言來學習,學生將學會使用最基本的集合語言去表達有關(guān)的數(shù)學對象,發(fā)展運用數(shù)學語言進行交流的能力。函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型。高中階段不僅把函數(shù)當作變量之間的依賴關(guān)系,同時還用集合與相應(yīng)的語言來刻畫函數(shù),函數(shù)的思想方法將貫穿于高中數(shù)學課程的始終。學生將學習指數(shù)函數(shù)、對數(shù)函數(shù)等具體的基本初等函數(shù),結(jié)合實際問題,感受運用函數(shù)概念建立模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的重要性,初步運用函數(shù)思想理解和解決現(xiàn)實生活和社會中的簡樸問題。學生還將學習運用函數(shù)的性質(zhì)求方程的近似解,體會函數(shù)與方程的有機聯(lián)系。內(nèi)容與規(guī)定1.集合(4課時)(1)集合的含義與表達①通過實例,了解集合的含義,體會元素與集合的“屬于”關(guān)系。②針對不同的具體問題,能選擇自然語言、圖形語言、集合語言(列舉法或描述法)加以描述。③會用集合語言對已經(jīng)學習過的某些數(shù)學對象加以描述,感受集合語言的意義和作用。(2)集合間的基本關(guān)系①理解集合之間包含與相等的含義,能辨認給定集合的子集。②在具體情境中,了解全集與空集的含義。(3)集合的基本運算①理解兩個集合的并集與交集的含義,會求兩個簡樸集合的并集與交集。②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。③能使用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。2.函數(shù)概念與基本初等函數(shù)I(32課時)(1)函數(shù)①通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與相應(yīng)的語言來刻畫函數(shù),體會相應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡樸函數(shù)的定義域和值域;了解映射的概念。②在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎ▓D象法、列表法、解析法)表達函數(shù)。③通過具體實例,了解簡樸的分段函數(shù),并能簡樸應(yīng)用。④通過已學過的函數(shù)特別是二次函數(shù),理解這些函數(shù)的單調(diào)性、最大(小)值及其幾何意義;知道奇偶性的含義。⑤學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)(參看例1)。(2)指數(shù)函數(shù)①通過具體實例(如:細胞的分裂,考古中所用的C14的衰減,藥物在人體內(nèi)殘留量的變化),了解指數(shù)函數(shù)模型的實際背景,體會引入有理指數(shù)冪的必要性。②理解有理指數(shù)冪的含義,知道實數(shù)指數(shù)冪的意義,掌握冪的運算。③理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。④在解決簡樸實際問題的過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型(參看例2)。(3)對數(shù)函數(shù)①理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然(常用)對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及對簡化運算的作用。②通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點。③知道指數(shù)函數(shù)y=ax和對數(shù)函數(shù)y=logax互為反函數(shù)。(a>1,a≠1) (4)冪函數(shù)y=x通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)y=x,y=x2,y=x3,y=x-1,y=x1/2的圖象,了解它們的變化情況。(5)函數(shù)與方程①結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。②根據(jù)具體函數(shù)的圖象,可以借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。(6)函數(shù)模型及其應(yīng)用①運用計算工具,對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。②收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等),了解函數(shù)模型的廣泛應(yīng)用。(7)實習作業(yè)根據(jù)某個主題,收集17世紀前后發(fā)生的一些對數(shù)學發(fā)展起重大作用的歷史事件和人物(開普勒、伽里略、笛卡爾、牛頓、萊布尼茲等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采用小組合作的方式寫一篇有關(guān)函數(shù)概念形成、發(fā)展或應(yīng)用的文章,在班級中進行交流。有關(guān)規(guī)定參見數(shù)學文化的規(guī)定。說明與建議1.集合是一個不加定義的概念,教學中應(yīng)結(jié)合學生的生活經(jīng)驗和已有知識,列舉豐富的實例,使學生理解集合的含義。學習集合語言最佳的方法是使用,在教學中要創(chuàng)設(shè)使學生運用集合語言進行表達和交流的情境和機會,以便學生在實際使用中逐漸熟悉“自然語言”、“集合語言”、“圖形語言”各自的特點,進行互相轉(zhuǎn)換并掌握集合語言。在關(guān)于集合之間的關(guān)系和運算的教學中,使用Venn圖是重要的。2.函數(shù)概念的教學要從實際背景和定義兩個方面幫助學生理解函數(shù)的本質(zhì)。函數(shù)概念的引入,一般有兩種方法,一種方法是:先學習映射,再學習函數(shù);另一種方法是:通過具體實例,體會數(shù)集之間的相應(yīng),即函數(shù)。考慮到多數(shù)高中學生的認知特點,為了有助于他們在對函數(shù)概念本質(zhì)的理解,建議采用后一種方式,從學生已掌握的具體函數(shù)和對函數(shù)的描述性定義入手,引導學生聯(lián)系自己的生活經(jīng)歷和實際問題,嘗試列舉各種各樣的函數(shù),構(gòu)建函數(shù)的一般概念。再通過對指數(shù)函數(shù)、對數(shù)函數(shù)等具體函數(shù)的研究,加深學生對函數(shù)概念的理解。3.在教學中,應(yīng)強調(diào)對于函數(shù)概念本質(zhì)的理解,避免在求函數(shù)定義域、值域及討論函數(shù)性質(zhì)時出現(xiàn)過于繁瑣的技巧訓練,避免人為地編制一些求定義域和值域的偏題。4.指數(shù)冪的教學,應(yīng)在回顧整數(shù)指數(shù)冪的概念及其運算性質(zhì)的基礎(chǔ)上,結(jié)合實例,引入有理指數(shù)冪及其運算性質(zhì),然后借助“用有理數(shù)逼近無理數(shù)”的思想,直觀地描述實數(shù)指數(shù)冪的意義及其運算性質(zhì),可以讓學生運用計算器或計算機的實際操作,感受這一“逼近”過程。5.反函數(shù)的解決,只規(guī)定以具體函數(shù)為例進行解釋,例如可通過比較同底的指數(shù)函數(shù)和對數(shù)函數(shù),說明指數(shù)函數(shù)y=ax和對數(shù)函數(shù)y=logax(a>1,a≠1)互為反函數(shù)。淡化對反函數(shù)的形式化定義,不規(guī)定一般地討論反函數(shù)的定義,也不規(guī)定求已知函數(shù)的反函數(shù)。6.在函數(shù)應(yīng)用的教學中,教師要引導學生不斷地體驗函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,體驗指數(shù)函數(shù)、對數(shù)函數(shù)等與現(xiàn)實世界的密切聯(lián)系及其在刻畫現(xiàn)實問題中的作用。7.應(yīng)注意鼓勵學生運用現(xiàn)代教育技術(shù)學習、探索和解決問題,如運用計算器、計算機畫出指數(shù)函數(shù)、對數(shù)函數(shù)等的圖象,探索、比較它們的變化規(guī)律,研究函數(shù)的性質(zhì),求方程的近似解等。參考案例例1如圖,直線和圓,當從開始在平面上繞點勻速旋轉(zhuǎn)(旋轉(zhuǎn)角度不超過90o)時,它掃過的圓內(nèi)陰影部分的面積是時間的函數(shù),它的圖象大體是()。例2家用電器(如冰箱等)使用的氟化物的釋放破壞了大氣上層的臭氧層。臭氧含量呈指數(shù)函數(shù)型變化,滿足關(guān)系式,其中是臭氧的初始量。(1)隨時間的增長,臭氧的含量是增長還是減少?(2)多少年以后將會有一半的臭氧消失?A2在本模塊中,學生將學習空間幾何初步、平面解析幾何初步。幾何學是研究現(xiàn)實世界中物體的形狀、大小與位置關(guān)系的數(shù)學學科。人們通常采用直觀感知、操作確認、思辨論證、度量計算等方法結(jié)識和探索幾何圖形與空間性質(zhì)。三維空間是人類生存的現(xiàn)實空間,結(jié)識空間圖形,培養(yǎng)和發(fā)展學生的幾何直覺、運用圖形語言進行交流的能力、空間想象能力與一定的推理論證能力是高中階段數(shù)學必修課程的一個基本規(guī)定。在空間幾何初步部分,學生將先從對空間幾何體的整體觀測入手,結(jié)識空間圖形;再以長方體等為載體,直觀結(jié)識和理解空間點、線、面的位置關(guān)系;最后對有關(guān)平行、垂直的性質(zhì)與鑒定用數(shù)學語言進行嚴格的表述,并對某些結(jié)論進行論證。學生還將了解一些簡樸幾何體的表面積與體積的計算方法。平面解析幾何是17世紀數(shù)學發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學思想。在本模塊中,學生將在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其互相位置關(guān)系,并了解空間直角坐標系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。內(nèi)容與規(guī)定1.空間幾何初步(18課時)(1)空間幾何體①運用實物模型、計算機軟件觀測大量立體圖形,結(jié)識柱、錐、臺、球及其簡樸組合體的結(jié)構(gòu)特性,并能運用這些特性描繪現(xiàn)實生活中簡樸物體的結(jié)構(gòu)。②能畫出簡樸立體圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的視圖,會用材料將上述的視圖復(fù)原為立體模型,并會用斜二側(cè)法畫出它們的直觀圖。③通過觀測用平行投影與中心投影這兩種方法畫出的視圖與直觀圖,了解立體圖形的不同表達形式。④完畢實習作業(yè),如畫出校舍某些建筑的視圖與直觀圖(在不影響圖形特性的基礎(chǔ)上,尺寸、線條等不作嚴格規(guī)定)。⑤了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不規(guī)定記憶公式)。(2)點、線、面之間的位置關(guān)系①借助長方體模型,在直觀結(jié)識和理解空間點、線、面的位置關(guān)系的基礎(chǔ)上,抽象出空間線、面位置關(guān)系的定義,并了解如下公理。公理:◆假如一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)?!暨^不在一條直線上的三點,有且只有一個平面?!艏偃鐑蓚€平面有一個公共點,那么它們有且只有一條過該點的公共直線?!羝叫杏谕粭l直線的兩條直線平行。◆空間中假如兩個角的兩條邊分別相應(yīng)平行,那么這兩個角相等或互補。②以空間幾何的上述定義和公理為出發(fā)點,通過直觀感知、操作確認、思辨論證,結(jié)識和理解空間中線面平行、垂直的有關(guān)性質(zhì)與鑒定。通過直觀感知、操作確認,歸納出以下鑒定定理:◆平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。◆一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行?!粢粭l直線與一個平面內(nèi)的兩條相交直線垂直,則該直線與此平面垂直?!粢粋€平面過另一個平面的垂線,則兩個平面垂直。通過直觀感知、操作確認,歸納出以下性質(zhì)定理,并加以證明:◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線互相平行?!舸怪庇谕粋€平面的兩條直線平行?!魞蓚€平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。③能運用已獲得的結(jié)論證明一些空間位置關(guān)系的簡樸命題。2.平面解析幾何初步(18課時)(1)直線與方程①在平面直角坐標系中,結(jié)合具體圖形,探索擬定直線位置的幾何要素。②理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線的斜率計算公式。③能根據(jù)斜率鑒定兩條直線平行或垂直。④根據(jù)擬定直線位置的幾何量,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系。⑤能用解方程組的方法求兩直線的交點坐標。⑥探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。(2)圓與方程①回顧擬定圓的幾何要素,在平面直角坐標系中,探索并掌握圓的標準方程與一般方程。②能根據(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關(guān)系。③能用直線和圓的方程解決一些簡樸的問題。(3)在平面解析幾何的學習過程中,體會用代數(shù)方法解決幾何問題的思想。(4)空間直角坐標系①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。②通過表達特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索并得出空間兩點間的距離公式。說明與建議1.空間幾何教學的重點是幫助學生逐步形成空間想象能力。本部分內(nèi)容的設(shè)計遵循從整體到局部、具體到抽象的原則,教師應(yīng)提供豐富的實物模型或運用計算機軟件呈現(xiàn)的空間幾何體,幫助學生結(jié)識空間幾何體的結(jié)構(gòu)特性,并能運用這些特性描述現(xiàn)實生活中簡樸物體的結(jié)構(gòu)。應(yīng)在義務(wù)教育階段有關(guān)三視圖學習的基礎(chǔ)上,幫助學生運用平行投影與中心投影,進一步掌握在平面上表達立體圖形的方法和技能。(參看例1)2.幾何教學應(yīng)注意引導學生通過對實際模型的結(jié)識,將自然語言轉(zhuǎn)化為圖形語言和符號語言。教師可以將長方體內(nèi)的點、線、面關(guān)系作為載體,使學生在直觀感知的基礎(chǔ)上,結(jié)識空間中點、線、面之間的位置關(guān)系;通過對圖形的觀測、實驗和說理,使學生進一步了解平行、垂直關(guān)系的基本性質(zhì)以及鑒定方法,學會準確地使用數(shù)學語言表述幾何對象的位置關(guān)系,并能解決一些簡樸的推理論證及應(yīng)用問題。(參看例2)3.空間幾何的教學中,規(guī)定對有關(guān)線面平行、垂直關(guān)系的性質(zhì)定理進行邏輯論證;對相應(yīng)的鑒定定理只規(guī)定直觀感知、操作確認,在選修課程C系列中將用向量方法加以論證。4.有條件的學校應(yīng)在教學過程中恰本地使用現(xiàn)代信息技術(shù)展示空間圖形,提高學生的幾何直覺,為幾何證明的教學提供生動的支持。教師可以指導和幫助學生運用空間幾何知識選擇課題,進行探究。5.在平面解析幾何的教學中,教師應(yīng)幫助學生經(jīng)歷如下的過程:一方面將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;解決代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿于平面解析幾何教學的始終,幫助學生不斷地體會“數(shù)形結(jié)合”的思想方法。參考案例例1如圖是一個獎杯的三視圖,請你畫出它的直觀圖,并求出這個獎杯的體積。例2觀測自己的教室,說出觀測到的點、線、面之間的位置關(guān)系,并說明理由。A3在本模塊中,學生將學習算法、記錄、概率。算法是數(shù)學的重要組成部分,是計算理論、計算機理論和技術(shù)的基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具有的一種數(shù)學素養(yǎng)。需要特別指出的是,中國古代數(shù)學中蘊涵了豐富的算法思想。在本模塊中,學生將在義務(wù)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力?,F(xiàn)代社會是信息化的社會,人們經(jīng)常需要收集數(shù)據(jù),根據(jù)所獲得的數(shù)據(jù)提取有價值的信息,并作出合理的決策。記錄是研究如何合理收集、整理、分析數(shù)據(jù)的學科,它可認為人們制定決策提供依據(jù)。隨機現(xiàn)象在平常生活中隨處可見,概率是研究隨機現(xiàn)象規(guī)律的學科,它為人們結(jié)識客觀世界提供了重要的思維模式和解決問題的模型,同時為記錄學的發(fā)展提供了理論基礎(chǔ)。因此,記錄與概率的基礎(chǔ)知識已經(jīng)成為一個未來公民的必備常識。在本模塊中,學生將在義務(wù)教育階段學習記錄與概率的基礎(chǔ)上,通過實際問題情境,學習隨機抽樣、樣本估計總體、線性回歸的基本方法,體會用樣本估計總體及其特性的思想;通過解決實際問題,較為系統(tǒng)地經(jīng)歷數(shù)據(jù)收集與解決的全過程,體會記錄思維與擬定性思維的差異。學生將結(jié)合具體實例,學習概率的某些基本性質(zhì)和簡樸的概率模型,加深對隨機現(xiàn)象的理解,能通過實驗、計算器(機)模擬估計簡樸隨機事件發(fā)生的概率。內(nèi)容與規(guī)定1.算法PAGE\#"'Page:'#'
'"算法含義:算法1PAGE\#"'Page:'#'
'"算法含義:算法1.感受干事情需要有一些程序。轉(zhuǎn)變觀念,平時解題沒有嚴格按程序。但要讓計算機做,必須嚴格按環(huán)節(jié)。因此,應(yīng)將平時解題中沒有想清楚的每步都想清楚。2.從具體數(shù)學問題入手,用自然語言進行描述。3.在教師指導下制成框圖,框圖能弄清楚(數(shù)學上說清楚)。4.在教師指導下寫成程序,上機嘗試。5.給一個對照表(自然語言與程序語言),學生嘗試獨立做一個。模仿,第二、操作嘗試,第三、實習??驁D、基本語句、基本程序、上機。簡樸問題畫框圖,根據(jù)對照表使用語言,并在教師指導下上機實行。一方面感受干事情需要有一些程序。目的:會畫框圖、使用語句對照表,上機操作,在此基礎(chǔ)上體驗算法的基本思想,能運用算法的思想解決一些已經(jīng)學習過或?qū)砼龅降臄?shù)學問題。提高邏輯思維能力。注重算法的思想,淡化技術(shù)操作。重要目的是通過具體實例,理解算法的重要性和有效性,加強邏輯思維訓練。能設(shè)計限度去算,不是重要的。計算機技術(shù)的基礎(chǔ)上軟件,軟件的基礎(chǔ)上算法(吳文?。?。教學建議:重視程序流程圖。(1)算法的含義、程序框圖①通過對解決具體問題過程與環(huán)節(jié)的分析(如:二元一次方程組求解等問題),體會算法的思想,了解算法的含義。②通過模仿、操作、探索,經(jīng)歷設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中(如:三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。(2)基本算法語句經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,體會算法的基本思想。(3)通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的奉獻,增強民族自豪感。2.記錄(16課時)(1)隨機抽樣①能從現(xiàn)實世界或其他學科中提出具有一定價值的記錄問題。②結(jié)合具體問題情境,理解隨機抽樣的必要性和重要性。③在參與解決記錄問題的過程中,學會用簡樸隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統(tǒng)抽樣方法。④能通過實驗、查閱資料、設(shè)計調(diào)查問卷等方法收集數(shù)據(jù)。(2)用樣本估計總體①通過實例體會分布的意義和作用,在表達樣本數(shù)據(jù)的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參看例1)。②通過實例理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)標準差。③能根據(jù)實際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特性(如平均數(shù)、標準差),并作出合理的解釋。④在解決記錄問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布、用樣本的基本數(shù)字特性估計總體的基本數(shù)字特性;初步體會樣本頻率分布和數(shù)字特性的隨機性。⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡樸的實際問題;能通過對數(shù)據(jù)的分析為合理的決策提供一些依據(jù),結(jié)識記錄的作用,體會記錄思維與擬定性思維的差異。⑥形成對數(shù)據(jù)解決過程進行初步評價的意識,了解新聞媒介、廣告等公布的數(shù)據(jù)也許帶來的誤導。(3)變量的相關(guān)性①通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)作出散點圖,并運用散點圖直觀結(jié)識變量間的相關(guān)關(guān)系。②經(jīng)歷用不同估算方法描述兩個變量線性相關(guān)的過程,知道最小二乘法的思想,能根據(jù)給出的線性回歸方程的系數(shù)公式建立線性回歸方程。3.概率(8課時)(1)在具體情境中,了解隨機事件發(fā)生的不擬定性和頻率的穩(wěn)定性,進一步了解概率的意義以及頻率與概率的區(qū)別。(2)通過實例,了解兩個互斥事件的概率加法公式。(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本領(lǐng)件數(shù)及事件發(fā)生的概率。(4)了解隨機數(shù)的意義,能運用模擬方法(涉及計算器產(chǎn)生隨機數(shù)來進行模擬)估計概率,初步體會幾何概型的意義(參看例2)。(5)通過閱讀材料,了解人類結(jié)識隨機現(xiàn)象的過程。說明與建議1.算法在高中數(shù)學課程中是一個新的內(nèi)容,其思想是非常重要的。但算法并不神秘,例如運用消元法解二元一次方程組、求最大公因數(shù)等的過程就是一種算法。為了有條理地、清楚地表達算法,往往需要將解決問題的過程整理成程序框圖;為了能在計算機上實現(xiàn),還需要將自然語言或程序框圖翻譯成計算機語言。本模塊重要的是使學生體會算法的思想,提高邏輯思維能力。不應(yīng)將此部分內(nèi)容簡樸解決成程序語言的學習和程序設(shè)計。2.算法教學必須通過實例進行,使學生在解決具體問題的過程中學習一些基本邏輯結(jié)構(gòu)和語句。有條件的地方,應(yīng)鼓勵學生盡也許上機嘗試。3.算法除作為本模塊的內(nèi)容之外,應(yīng)當在其他有關(guān)內(nèi)容中注意滲透算法思想,鼓勵學生盡也許地運用算法解決相關(guān)問題。4.教師應(yīng)引導學生體會記錄的作用和基本思想,記錄的特性是通過部分的數(shù)據(jù)來推測全體數(shù)據(jù)的性質(zhì)。學生應(yīng)體會記錄思維與擬定性思維的差異,注意到記錄結(jié)果的隨機性,記錄推斷是有也許犯錯誤的。5.記錄是為了從數(shù)據(jù)中提取信息,教學時應(yīng)引導學生根據(jù)實際問題的需求選擇不同的方法合理地選取樣本,并從樣本數(shù)據(jù)中提取需要的數(shù)字特性。不應(yīng)把記錄解決成數(shù)字運算和畫圖表。對記錄中的概念(如“總體”、“樣本”等)應(yīng)結(jié)合具體問題進行描述性說明,不應(yīng)追求嚴格的形式化定義。6.記錄教學必須通過案例來進行。教學中應(yīng)通過對一些典型案例的解決,使學生經(jīng)歷較為系統(tǒng)的數(shù)據(jù)解決全過程,在此過程中學習一些數(shù)據(jù)解決的方法,并運用所學知識、方法去解決實際問題。例如在學習線性相關(guān)的內(nèi)容時,教師可以鼓勵學生探索用多種方法擬定線性回歸直線。在此基礎(chǔ)上,教師可以引導學生體會最小二乘法的思想,根據(jù)給出的公式求線性回歸方程。對感愛好的學生,教師可以鼓勵他們嘗試推導線性回歸方程。(參看例3)7.概率教學的核心問題是讓學生了解隨機現(xiàn)象與概率的意義。教師應(yīng)通過平常生活中的大量實例,鼓勵學生動手實驗,對的理解隨機事件發(fā)生的不擬定性及其頻率的穩(wěn)定性,并嘗試澄清平常生活碰到的一些錯誤結(jié)識。(如:“中獎率為1/1000的彩票,買1000張一定中獎?!?.古典概型的教學應(yīng)讓學生通過實例理解古典概型的特性:實驗結(jié)果的有限性和每一個實驗結(jié)果出現(xiàn)的等也許性。讓學生初步學會把一些實際問題化為古典概型。教學中不要把重點放在“如何計數(shù)”上。9.應(yīng)鼓勵學生盡也許運用計算器、計算機來解決數(shù)據(jù)、進行模擬活動,更好地體會記錄思想和概率的意義。例如,可以運用計算器產(chǎn)生隨機數(shù)來模擬擲硬幣的實驗等。參考案例例1下面某賽季甲、乙兩名籃球運動員每場比賽得分情況的比較圖:甲乙085213465423689766113389944051根據(jù)上圖對兩名運動員的成績進行比較。(甲運動員的得分情況是大體對稱的,中位數(shù)是36;乙運動員的得分情況除一個特殊得分外,也大體對稱,中位數(shù)是26。因此甲運動員發(fā)揮比較穩(wěn)定,總體得分比乙好。)例2在所示的圖中隨機撒一大把豆子,(可以運用計算器、計算機模擬這一過程),計算落在圓中的豆子數(shù)與落在正方形中的豆子數(shù)之比由此估計圓周率的值,并初步體會幾何概型的意義。例3下表是某小賣部6天賣出的熱茶的杯數(shù)與當天氣溫的對比表:氣溫(℃)杯數(shù)261813104-1202434385064(1)將上表中的數(shù)據(jù)制成散點圖。(2)你能從散點圖中發(fā)現(xiàn)溫度與飲料杯數(shù)近似成什么關(guān)系嗎?(3)假如近似成線性關(guān)系的話,請畫出一條直線來近似地表達這種線性關(guān)系。(4)假如某天的氣溫是-5℃時,預(yù)測這天小賣部賣出熱茶的杯數(shù)。(當運用直線近似表達溫度與杯數(shù)的關(guān)系時,學生也許選擇能反映直線變化的兩個點,例如(4,50),(18,24)擬定一條直線;也可以取一條直線,使得直線一側(cè)和另一側(cè)點的個數(shù)基本相同;還也許多取幾組點,擬定幾條直線方程,再分別算出各條直線斜率、截距的算術(shù)平均值,作為所求直線的斜率、截距。)A4在本模塊中,學生將學習三角函數(shù)、解三角形、數(shù)列。三角函數(shù)是基本初等函數(shù),它是描述周期現(xiàn)象的重要數(shù)學模型,在數(shù)學和其他領(lǐng)域中具有重要的作用。在本模塊中,學生將通過實例,學習三角函數(shù)及其基本性質(zhì),體會三角函數(shù)在解決具有周期變化規(guī)律的問題中的作用。學生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并結(jié)識到運用它們可以解決一些與測量和計算有關(guān)的實際問題。數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本的數(shù)學模型。在本模塊中,學生將通過對平常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并運用它們解決一些實際問題。內(nèi)容與規(guī)定1.三角函數(shù)(14課時)(1)任意角、弧度了解任意角的概念和弧度制,能進行弧度與角度的互化。(2)三角函數(shù)①借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義。②借助單位圓中的三角函數(shù)線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖象,了解三角函數(shù)的周期性。③借助圖象理解正弦函數(shù)、余弦函數(shù)在[0,2π],正切函數(shù)在[-π/2,π/2]上的性質(zhì)(如單調(diào)性、最大和最小值、圖象與x軸交點等)。④理解同角三角函數(shù)的基本關(guān)系式:sin2x+cos2x=1,sinx/cosx=tanx。⑤結(jié)合具體實例,了解y=Asin(x+)的實際意義;能借助計算器或計算機畫出y=Asin(x+)的圖象,觀測A,,對函數(shù)圖象變化的影響。⑥會用三角函數(shù)解決一些簡樸實際問題,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型。2.解三角形(8課時)(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡樸的三角形度量問題。(2)可以運用正弦定理、余弦定理等知識和方法解決一些與測量和計算有關(guān)的實際問題。3.數(shù)列(12課時)(1)數(shù)列的概念和簡樸表達法通過平常生活中的實例,了解數(shù)列的概念和幾種簡樸的表達方法(列表、圖象、通項公式),了解數(shù)列是一種特殊函數(shù)。(2)等差數(shù)列、等比數(shù)列①通過實例,理解等差數(shù)列、等比數(shù)列的概念。②探索并掌握等差數(shù)列、等比數(shù)列的通項公式和前n項和公式。③能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。(參見例1)④體會等差數(shù)列、等比數(shù)列與一次函數(shù)、指數(shù)函數(shù)的關(guān)系。說明與建議1.在三角函數(shù)的教學中,教師應(yīng)根據(jù)學生的生活經(jīng)驗,創(chuàng)設(shè)豐富的情境,使學生體會三角函數(shù)的模型作用。如:通過單擺、彈簧振子、圓上一點的運動,以及音樂、波浪、潮汐、四季變化等實例,使學生感受周期現(xiàn)象的廣泛存在,結(jié)識周期現(xiàn)象的變化規(guī)律,明確三角函數(shù)是刻畫周期現(xiàn)象的重要模型,發(fā)展運用三角函數(shù)描述周期現(xiàn)象的能力。(參見例2)2.在三角函數(shù)的教學中,應(yīng)發(fā)揮單位圓的作用。單位圓可以幫助學生直觀地結(jié)識任意角,理解三角函數(shù)的周期性、誘導公式、同角三角函數(shù)關(guān)系式,以及三角函數(shù)的圖象和基本性質(zhì)。借助單位圓的直觀,教師可以引導學生自主地探索三角函數(shù)的有關(guān)性質(zhì),培養(yǎng)他們分析問題和解決問題的能力。3.提醒學生重視學科之間的聯(lián)系與綜合,在學習其他學科的相關(guān)內(nèi)容(如單擺運動、波的傳播、交流電)時,注意運用三角函數(shù)來分析和理解。4.弧度是學生比較難接受的概念,教學中應(yīng)使學生體會弧度也是一種度量角的單位(圓周的1/2π)。隨著后繼課程的學習,他們將會逐步理解這一概念,在此不必深究。PAGE\#"'Page:'#'
'"PAGE\#"'Page:'#'
'"角度是用自己來量自己,弧度是用長度來量角度?;《润w現(xiàn)了等價類的思想?;《鹊囊虢y(tǒng)一了角度和長度單位。5.解三角形的教學要重視正弦定理和余弦定理在探索三角形邊角關(guān)系中的作用,引導學生結(jié)識它們是解決測量問題的一種方法,而不必在恒等變形上做過于繁瑣的訓練。6.等差數(shù)列和等比數(shù)列有著廣泛的應(yīng)用,教學中應(yīng)重視通過具體實例(如:教育貸款、購房貸款、放射性物質(zhì)的衰變、人口增長等),使學生理解這兩種數(shù)列模型的作用,培養(yǎng)學生從實際問題中抽象出數(shù)列模型的能力。7.在數(shù)列的教學中,應(yīng)保證基本技能的訓練,引導學生通過必要的練習,掌握數(shù)列中各量之間的基本關(guān)系。但訓練時,要控制難度和復(fù)雜限度。8.在本模塊的教學中,應(yīng)鼓勵學生使用計算器和計算機探索和解決問題。例如,求三角函數(shù)值,計算測量問題,分析y=Asin(x+)中參數(shù)變化對函數(shù)的影響等。在三角函數(shù)、解三角形、數(shù)列相應(yīng)的內(nèi)容中可以插入數(shù)學探究或數(shù)學建?;顒?。參考案例例1教育儲蓄的收益與比較規(guī)定學生收集有關(guān)本地區(qū)教育儲蓄的信息,思考以下問題。(1)依教育儲蓄的方式,每月存50元,連續(xù)存3年,到期(3年)或6年時一次可支取本息共多少元?(2)依教育儲蓄的方式,每月存a元,連續(xù)存3年,到期(3年)或6年時一次可支取本息共多少錢?(3)依教育儲蓄的方式,每月存50元,連續(xù)存3年,到期(3年)時一次可支取本息比同檔次的“零存整取”多收益多少元?(4)欲在3年后一次支取教育儲蓄本息合計1萬元,每月應(yīng)存入多少元?(5)欲在3年后一次支取教育儲蓄本息合計a萬元,每月應(yīng)存入多少元?(6)依教育儲蓄的方式,原打算每月存100元,連續(xù)存6年,可是到4年時,學生需要提前支取所有本息,一次可支取本息共多少元?(7)依教育儲蓄的方式,原打算每月存a元,連續(xù)存6年,可是到b年時,學生需要提前支取所有本息,一次可支取本息共多少元?(8)開放題:不用教育儲蓄的方式,而用其他的儲蓄形式,以每月可存100元,6年后使用為例,探討以現(xiàn)行的利率標準也許的最大收益,將得到的結(jié)果與教育儲蓄比較。例2海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地早潮叫潮,晚潮叫汐。在通常的情況下,船在漲潮時駛進航道,靠近船塢;卸貨后落潮時返回海洋。下面是某港口在某季節(jié)天天的時間與水深關(guān)系表:時刻水深(米)時刻水深(米)時刻水深(米)0:005.09:002.518:005.03:007.512:005.021:002.56:005.015:007.524:005.0(1)選用一個三角函數(shù)來近似描述這個港口的水深與時間的函數(shù)關(guān)系。給出整點時的水深的近似數(shù)值。(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離)?該船何時能進入港口?在港口能呆多久?(3)若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時0.3米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?A5在本模塊中,學生將學習平面向量、三角恒等變換、不等式。向量是近代數(shù)學中重要和基本的數(shù)學概念之一,它是溝通代數(shù)與幾何的一種工具,有著極其豐富的實際背景。在本模塊中,學生將了解向量豐富的實際背景,理解平面向量及其運算的意義,能用向量語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。三角恒等變換在三角函數(shù)學習中有一定的作用,有助于發(fā)展學生的推理能力和運算能力。在本模塊中,學生將運用向量的方法推導基本的三角恒等變換公式,由此出發(fā)導出其它的三角恒等變換公式,并能運用這些公式進行簡樸恒等變換。不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學研究的重要內(nèi)容。建立不等觀念、解決不等關(guān)系與解決等量問題是同樣重要的。在本模塊中,學生將通過具體情境,感受在現(xiàn)實世界和平常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表達平面區(qū)域,并嘗試解決一些簡樸的二元線性規(guī)劃問題;結(jié)識基本不等式及其簡樸應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。內(nèi)容與規(guī)定1.平面向量(12課時)(1)平面向量的實際背景及基本概念通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表達。(2)向量的線性運算①通過實例,掌握向量加減法的運算,并理解其幾何意義。②通過實例,掌握向量數(shù)乘的運算,并理解其幾何意義,以及兩個向量共線的含義。③了解向量的線性運算性質(zhì)及其幾何意義。(3)平面向量的基本定理及坐標表達①了解平面向量的基本定理及其意義,能將平面向量表達為坐標軸上單位向量的線性組合。②會用有序?qū)崝?shù)對表達平面向量。③會用坐標表達平面向量的加減與數(shù)乘運算。④理解用坐標表達的平面向量共線的條件。(4)平面向量的數(shù)量積①通過物理中“功”等實例,理解平面向量數(shù)量積的含義及其物理意義。②掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算。③體會平面向量的數(shù)量積與向量投影的關(guān)系。④能運用數(shù)量積表達兩向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。(5)向量的應(yīng)用經(jīng)歷用向量方法解決某些簡樸的平面幾何問題、力學問題與一些其他的實際問題的過程,體會向量是一種解決幾何等問題的工具,發(fā)展運算能力和解決實際問題的能力。2.三角恒等變換(8課時)(1)經(jīng)歷用向量的數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用。(2)能從兩角差的余弦公式導出并會用兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。(3)能運用上述公式進行簡樸的恒等變換(涉及嘗試導出積化和差、和差化積、半角公式,但不規(guī)定記憶)。3.不等式(16課時)(1)不等關(guān)系通過具體情境,感受在現(xiàn)實世界和平常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。(2)一元二次不等式①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。②通過函數(shù)圖象了解一元二次不等式與函數(shù)、方程的聯(lián)系。③會解一元二次不等式,嘗試設(shè)計求解給定的一元二次不等式的程序框圖。(3)二元一次不等式組與簡樸線性規(guī)劃問題①從實際情境中抽象出二元一次不等式組。②了解二元一次不等式的幾何意義,能用平面區(qū)域表達二元一次不等式組。(參看例1)③從實際情境中抽象出一些簡樸的二元線性規(guī)劃問題,并能加以解決。(參看例2)(4)基本不等式:(a,b≥0)①探索并了解基本不等式的證明過程。②會用基本不等式解決簡樸的最大(小)問題。(參看例3、例4)說明與建議1.向量概念的教學應(yīng)從物理背景和幾何背景入手,物理背景就是力、速度、加速度等概念,幾何背景就是有向線段。了解這些物理背景和幾何背景,對于他們理解向量概念和運用向量解決實際問題都是十分重要的。教師還可以引導學生運用向量解決一些物理和幾何問題。如運用向量計算力沿某方向所做的功,運用向量解決平面內(nèi)兩條直線平行與垂直的位置關(guān)系等問題。2.在三角恒等變換的教學中,可以引導學生運用向量的數(shù)量積推導出兩角差的余弦公式,并由此公式推導出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。并鼓勵學生獨立探索和討論交流,嘗試推導積化和差、和差化積、半角公式,以此作為三角恒等變換的基本訓練。3.一元二次不等式教學中,應(yīng)注重使學生了解一元二次不等式的實際背景。求解一元二次不等式,一方面應(yīng)求出相應(yīng)方程的根,然后根據(jù)相應(yīng)函數(shù)的圖象求出不等式的解;也可以運用代數(shù)的方法求解。鼓勵學生設(shè)計求解一元二次不等式的程序框圖。4.不等式有豐富的實際背景,是刻畫區(qū)域的重要工具??坍媴^(qū)域是解決線性規(guī)劃問題的一個基本環(huán)節(jié),教學中可以從實際背景引入二元一次不等式組。5.優(yōu)化是解決實際問題的一種基本思想,線性規(guī)劃是優(yōu)化的具體模型之一。在本模塊內(nèi)容的教學中,教師應(yīng)引導學生體會線性規(guī)劃的基本思想,借助幾何直觀解決一些簡樸的線性規(guī)劃問題,但不必引入很多名詞。參考案例例1醫(yī)生叮囑某個病人每餐至少要攝入55克蛋白質(zhì)和125克維生素C。某午餐提供肉片和蔬菜,在1克的肉片中含235毫克的蛋白質(zhì),不含維生素C;在1克的蔬菜中含33毫克的蛋白質(zhì)和100毫克的維生素C。設(shè)計出符合醫(yī)生規(guī)定的營養(yǎng)配餐。(假設(shè)需要x克肉片,y克蔬菜,則如上問題可用不等式組來表達235x+33y≥55000,100y≥125000。其中x≥0,y≥0在平面直角坐標系中表達出上述不等式組,即得到一個平面區(qū)域。)DABCP例2海建是一個咖啡生產(chǎn)供應(yīng)公司,本月該公司倉庫中有4000公斤的精品豆和2023公斤的普通豆。該公司與某咖啡屋簽署了生產(chǎn)消費協(xié)議,每月向咖啡屋供應(yīng)5000公斤的咖啡原料,以制成極品咖啡和普通咖啡。極品咖啡完全由精品豆研制而成,而普通咖啡則是由極品豆和普通豆混合制成的。假如每公斤極品咖啡的價格為DABCP例3如圖,設(shè)矩形ABCD(AB>AD)的周長為24,把它關(guān)于AC折起,AB折過來以后交DC于點P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)的x值。例4某工廠建造一個長方體無蓋貯水池,其容積為4800m3,深度為3m。假如池底每1m2的造價為150元,池壁每1m2的造價為120元,如何設(shè)計水池能使總造價最低,最低總造價是多少元?二、選修課程B,C系列課程在完畢必修課程學習的基礎(chǔ)上,對于希望進一步學習數(shù)學的學生,可以根據(jù)自己的愛好和需求,選擇學習B、C系列課程。B系列課程是為希望在人文、社會科學等方面發(fā)展的學生而設(shè)立的,包含2個模塊,共4學分。C系列課程則是為希望在理工、經(jīng)濟等方面發(fā)展的學生設(shè)立的,包含3個模塊,共6學分。B系列課程2個模塊的內(nèi)容分別為:B1:常用邏輯用語,圓錐曲線與方程,導數(shù)及其應(yīng)用。B2:記錄案例,推理和證明,數(shù)系擴充與復(fù)數(shù)的引入,框圖。C系列課程3個模塊的內(nèi)容分別為:C1:常用邏輯用語,圓錐曲線與方程,空間向量與立體幾何。C2:導數(shù)及其應(yīng)用,數(shù)系的擴充與復(fù)數(shù)的引入。C3:計數(shù)原理,記錄,概率。在B、C系列的課程中,有一部分內(nèi)容及規(guī)定是相同的,如常用邏輯用語、記錄案例、數(shù)系擴充與復(fù)數(shù)等;有一部分內(nèi)容基本相同,但規(guī)定不同,如導數(shù)及其應(yīng)用、圓錐曲線與方程;尚有一些不同的內(nèi)容,B系列中安排了推理和證明、框圖等內(nèi)容,C系列安排了空間向量與立體幾何、計數(shù)原理、離散隨機變量及其分布等內(nèi)容。對于希望在人文、社會科學方面發(fā)展的學生,考慮到其愛好和需求的不同、學時的限制,在B系列安排了“推理和證明”和“框圖”兩部分內(nèi)容。這既可以加強學生對邏輯思維的結(jié)識和訓練,也有助于學生此后的工作。對于選擇C系列的學生,由于在他們學習的很多內(nèi)容中涉及了推理和證明,強調(diào)了推理和證明的基本方法和基本訓練,所以沒有安排“推理與證明”和“框圖”的內(nèi)容。B系列課程B1本模塊中,學生將學習常用邏輯用語、圓錐曲線與方程、導數(shù)及其應(yīng)用。對的地使用邏輯用語是現(xiàn)代社會公民應(yīng)當具有的基本素質(zhì)。無論是進行思考、交流,還是從事各項工作,都需要對的地運用邏輯用語表達自己的思想。在本模塊中,學生將在義務(wù)教育階段的基礎(chǔ)上,學習常用邏輯用語,體會邏輯用語在表述和論證中的作用,運用這些邏輯用語準確地表達數(shù)學內(nèi)容,更好地進行交流。在必修課程學習解析幾何內(nèi)容的基礎(chǔ)上,在本模塊中,學生將學習圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想。微積分的創(chuàng)建是數(shù)學發(fā)展中的里程碑,它的發(fā)展及廣泛應(yīng)用,開創(chuàng)了向近代數(shù)學過渡的新時期,它為研究變量與函數(shù)提供了重要的方法和手段。導數(shù)的概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應(yīng)用。在本模塊中,學生將通過大量實例,經(jīng)歷由平均變化率到瞬時變化率刻畫現(xiàn)實問題的過程,理解導數(shù)的含義,體會導數(shù)的思想及其內(nèi)涵;應(yīng)用導數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導數(shù)在解決數(shù)學問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值和作用。內(nèi)容與規(guī)定1.常用邏輯用語(8課時)(1)命題及其關(guān)系①了解命題的逆命題、否命題與逆否命題。②理解必要條件、充足條件與充要條件的意義,會分析四種命題的互相關(guān)系。(2)簡樸的邏輯聯(lián)結(jié)詞通過數(shù)學實例,了解“或”、“且”、“非”的含義。(3)全稱量詞與存在量詞①通過生活和數(shù)學中的豐富實例,理解全稱量詞與存在量詞的意義。②能對的地對具有一個量詞的命題進行否認。2.圓錐曲線與方程(12課時)(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。(2)經(jīng)歷從具體情境中抽象出橢圓模型的過程,掌握橢圓的定義、標準方程及簡樸性質(zhì)。(3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的有關(guān)性質(zhì)。(4)通過圓錐曲線的學習,體會數(shù)形結(jié)合的思想。(5)了解圓錐曲線的簡樸應(yīng)用。3.導數(shù)及其應(yīng)用(16課時)(1)導數(shù)概念及其幾何意義①通過對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵。(參見例1、例2)②通過函數(shù)圖象直觀地理解導數(shù)的幾何意義——切線。(2)導數(shù)的運算①能根據(jù)導數(shù)定義,求函數(shù)y=c,y=x,y=x2的導數(shù)。②能運用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡樸函數(shù)的導數(shù)。③會使用導數(shù)公式表。(見附錄)(3)導數(shù)在研究函數(shù)中的應(yīng)用①結(jié)合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關(guān)系;能運用導數(shù)研究函數(shù)的單調(diào)性,會求不超過3次的多項式函數(shù)的單調(diào)區(qū)間。②結(jié)合函數(shù)的圖象,了解函數(shù)在某點取得極值的必要條件和充足條件;會用導數(shù)求不超過3次的多項式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過3次的多項式函數(shù)的最大值、最小值。(4)生活中的優(yōu)化問題舉例。如:使用利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用。(參看例3)(5)數(shù)學文化收集有關(guān)微積分創(chuàng)建的時代背景和有關(guān)人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。有關(guān)規(guī)定見數(shù)學文化的規(guī)定。說明與建議1.在常用邏輯用語教學中,應(yīng)特別注意以下幾個問題:(1)這里考慮的命題是指條件和結(jié)論比較明顯的命題,對“命題的逆命題、否命題與逆否命題”只規(guī)定做一般性了解,重點關(guān)注四種命題的互相關(guān)系和命題的必要條件、充足條件、充要條件。(2)對邏輯連接詞“或”、“且”、“非”的含義,只規(guī)定通過數(shù)學實例加以了解,幫助學生對的地表述相關(guān)的數(shù)學內(nèi)容。(3)對于量詞,重在理解它們的含義,不要追求它們的形式化定義。(4)注意引導學生在使用常用邏輯用語的過程中,掌握常用邏輯用語的用法,糾正出現(xiàn)的邏輯錯誤,體會運用常用邏輯用語表述數(shù)學內(nèi)容的準確性、簡潔性。避免對邏輯用語的機械記憶和抽象解釋,不規(guī)定使用真值表。2.在引入圓錐曲線時,應(yīng)通過豐富的實例,如:行星運營軌道,拋物運動軌跡,探照燈的鏡面等,使學生了解圓錐曲線的背景與應(yīng)用。3.教師也應(yīng)向?qū)W生展示平面截圓錐得到橢圓的過程,使學生加深對圓錐曲線的理解。有條件的學校應(yīng)充足發(fā)揮現(xiàn)代教育技術(shù)的作用,運用計算機演示平面截圓錐所得的圓錐曲線。(參見例4)4.教師可以向?qū)W生展現(xiàn)圓錐曲線在實際中的應(yīng)用,例如,投擲鉛球的運營軌跡,衛(wèi)星的運營軌跡等。5.本模塊中,導數(shù)的概念不是在定義極限的基礎(chǔ)上給出,而是通過實際背景和具體應(yīng)用的實例引入的。教學中,可以通過研究增長率、膨脹率、效率、密度、速度等反映導數(shù)應(yīng)用的實例,引導學生經(jīng)歷由平均變化率到瞬時變化率的過程,知道瞬時變化率就是導數(shù)。通過感受導數(shù)在研究函數(shù)和解決實際問題中的作用,體會導數(shù)的思想及其內(nèi)涵。這樣解決的目的是幫助學生直觀理解導數(shù)的背景、思想和作用。6.在教學中,要防止將導數(shù)僅僅作為一些規(guī)則和環(huán)節(jié)來學習,而忽視它的思想和價值。應(yīng)使學生結(jié)識到,任何事物的變化率都可以用導數(shù)來描述。參考案例例1(平均變化率)國家環(huán)保局在規(guī)定的排污達標的日期前,對甲、乙兩家公司進行檢查,其連續(xù)檢測結(jié)果如下圖所示。試問那個公司治污效果好。(其中表達治污量)(在處,雖然,然而,所以說在單位時間里公司甲比公司乙的平均治污率大,因此公司甲比公司乙略好一籌)。例2我們知道,當運動員從10米高臺跳水時,從騰空到進入水面的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對地面的高度為:,在2秒時運動員的速度(瞬時速度)為多少?(解:該運動員在2秒到2.1秒(記為[2,2.1]的平均速度為。同樣,可以計算出[2,2.01],[2,2.001],……的平均速度,也可以計算出[1.99,2],[1.999,2],……的平均速度。時間間隔平均速度時間間隔平均速度[2,2.1]0.1-13.59[1.9,2]0.1-12.61[2,2.01]0.01-13.149[1.99,2]0.01-13.051[2,2.001]0.001-13.1049[1.999,2]0.001-13.0951[2,2.0001]0.0001-13.10049[1.9999,2]0.0001-13.09951[2,2.00001]0.00001-13.100049[1.99999,2]0.00001-13.099951………………由此可以看出,當時間間隔越來越小時,平均速度趨于一個常數(shù),這一常數(shù)(13.1)就可作為該運動員在2秒時的速度。例3有一邊長為a的正方形鐵片,鐵片的四角截去四個邊長為x的小正方形,然后作成一方盒。試把方盒的容積V表達x的函數(shù)。求x多大時,作成方盒的容積V最大。例4如圖,用一個平面去截圓錐,這個平面與圓錐的交線是一個橢圓。在圓錐內(nèi)做大小兩個球分別與圓錐和截面相切。那么,截面與兩個球的切點恰是橢圓的兩個焦點。B2在本模塊中,學生將學習記錄案例、推理和證明、數(shù)系擴充及復(fù)數(shù)的引入、框圖。學生將在必修課程學習記錄的基礎(chǔ)上,通過對典型案例的討論,了解和使用一些常用的記錄方法,進一步體會運用記錄方法解決實際問題的基本思想,結(jié)識記錄方法在決策中的作用?!巴评砗妥C明”是數(shù)學的基本思維過程,也是人們學習和生活中經(jīng)常使用的思維方式。推理一般涉及合情推理和演繹推理。合情推理是根據(jù)已有的事實和對的的結(jié)論(涉及定義、公理、定理等)、實驗和實踐的結(jié)果,以及個人的經(jīng)驗和直覺等推測某些結(jié)果的推理過程,歸納、類比是合情推理常用的思維方法。在解決問題的過程中,合情推理具有猜測和發(fā)現(xiàn)結(jié)論、探索和提供思緒的作用,有助于創(chuàng)新意識的培養(yǎng)。演繹推理是根據(jù)已有的事實和對的的結(jié)論(涉及定義、公理、定理等),按照嚴格的邏輯法則得到新的結(jié)論的推理過程,有助于學生避免出現(xiàn)邏輯錯誤,提高邏輯思維能力。合情推理和演繹推理之間聯(lián)系緊密、相輔相成。證明通常涉及邏輯證明和實驗、實踐證明,數(shù)學結(jié)論的對的性必須通過邏輯證明來保證,即在前提對的的基礎(chǔ)上,通過對的使用演繹推理得出結(jié)論。在本模塊中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及兩者之間的聯(lián)系與差異;體會數(shù)學證明的特點,了解數(shù)學證明的基本方法,涉及直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法),感受邏輯證明在數(shù)學以及平常生活中的作用,養(yǎng)成言之有理、論證有據(jù)的習慣??驁D是表達一個系統(tǒng)各部分和各環(huán)節(jié)之間關(guān)系的圖示,它的作用在于可以清楚地表達比較復(fù)雜的系統(tǒng)各部分之間的關(guān)系??驁D已經(jīng)廣泛應(yīng)用于算法、計算機程序設(shè)計、工序流程的表述、設(shè)計方案的比較等方面,也是表達數(shù)學計算與證明過程中重要邏輯環(huán)節(jié)的工具,并將成為平常生活和各門學科中進行交流的一種常用表達方式。在本模塊中,學生將學習用“流程圖”、“結(jié)構(gòu)圖”刻畫數(shù)學問題以及其他問題的解決過程;并在學習過程中,體驗用框圖表達數(shù)學問題解決過程以及事物發(fā)生、發(fā)展過程的優(yōu)越性,提高抽象概括能力和邏輯思維能力,從而能清楚地表達和交流思想。數(shù)系擴充的過程體現(xiàn)了數(shù)學的發(fā)現(xiàn)和發(fā)明過程,同時體現(xiàn)了數(shù)學發(fā)生發(fā)展的客觀需求和背景,復(fù)數(shù)的引入是中學階段數(shù)系的最后一次擴充。在本模塊中,學生將在問題情境中了解數(shù)系擴充的過程以及引入復(fù)數(shù)的必要性,學習復(fù)數(shù)的一些基本知識,體會數(shù)系擴充中人類理性思維的作用。內(nèi)容與規(guī)定1.記錄案例(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)品租賃合同
- 會議場地租賃合同協(xié)議書
- 保密協(xié)議商業(yè)合同
- 無錫工藝職業(yè)技術(shù)學院《工程安全健康與環(huán)境管理》2023-2024學年第二學期期末試卷
- 寧夏民族職業(yè)技術(shù)學院《賓館酒店管理》2023-2024學年第二學期期末試卷
- 菏澤家政職業(yè)學院《輕工行業(yè)清潔生產(chǎn)及污染控制技術(shù)》2023-2024學年第二學期期末試卷
- Unit 5 Revealing Nature Developing ideas The Secret Language of Plants教學設(shè)計 2024-2025學年高中英語人教版選擇性必修第二冊
- 沈陽醫(yī)學院《機器人工程專業(yè)導論》2023-2024學年第二學期期末試卷
- 寧夏財經(jīng)職業(yè)技術(shù)學院《主題閱讀(1)》2023-2024學年第二學期期末試卷
- 山東勝利職業(yè)學院《化工原理一》2023-2024學年第二學期期末試卷
- 期末測試卷(一)(試題)2023-2024學年二年級上冊數(shù)學蘇教版
- 攜程在線能力測評真題
- 人教版(2024)六年級全一冊 第17課 設(shè)計我的種植園
- 承包商入廠安全培訓試題附參考答案【完整版】
- 四川省公務(wù)員考試行測真題
- 2024年廣東省初中學業(yè)水平考試中考英語試卷(真題+答案解析)
- DL-T-255-2012燃煤電廠能耗狀況評價技術(shù)規(guī)范
- 家庭教育家長會教案及反思(3篇模板)
- 職業(yè)培訓師三級操作技能鑒定卷庫及答案
- 【視頻號運營】視頻號運營108招
- 新能源客車安全應(yīng)急處理指南
評論
0/150
提交評論