2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷含解析_第1頁
2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷含解析_第2頁
2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷含解析_第3頁
2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷含解析_第4頁
2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆上海市青浦區(qū)中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,O為AC中點(diǎn),EF過O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為(

)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.42.某青年排球隊(duì)12名隊(duì)員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊(duì)員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,203.﹣2的絕對值是()A.2 B. C. D.4.如圖,在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.125.下列左圖表示一個(gè)由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小立方塊的個(gè)數(shù),則該幾何體的主視圖為()A. B. C. D.6.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.7.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠08.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.4 B.5 C.6 D.79.共享單車為市民出行帶來了方便,某單車公司第一個(gè)月投放1000輛單車,計(jì)劃第三個(gè)月投放單車數(shù)量比第一個(gè)月多440輛.設(shè)該公司第二、三兩個(gè)月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+44010.如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°二、填空題(共7小題,每小題3分,滿分21分)11.已知函數(shù)是關(guān)于的二次函數(shù),則__________.12.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.13.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點(diǎn)M、N;②分別以點(diǎn)M、N為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點(diǎn)O,連接OC,則OC=________.14.小明擲一枚均勻的骰子,骰子的六個(gè)面上分別刻有1,2,3,4,5,6點(diǎn),得到的點(diǎn)數(shù)為奇數(shù)的概率是.15.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長為_____.16.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_____.17.如果點(diǎn)P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點(diǎn)D,點(diǎn)E在⊙O上,且DE=DA,AE與BC交于點(diǎn)F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3419.(5分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長最大,求出此時(shí)P點(diǎn)的坐標(biāo).20.(8分)關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<121.(10分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是;(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是;(3)△A2B2C2的面積是平方單位.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD.過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E.求證:DE是⊙O的切線;當(dāng)⊙O半徑為3,CE=2時(shí),求BD長.23.(12分)如圖,△ABC與△A1B1C1是位似圖形.(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(-6,-1),點(diǎn)C1的坐標(biāo)為(-3,2),則點(diǎn)B的坐標(biāo)為____________;(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1∶2;(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為________,計(jì)算四邊形ABCP的周長為_______.24.(14分)先化簡,再求值:,其中,.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】∵EF⊥AC,點(diǎn)G是AE中點(diǎn),∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設(shè)AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點(diǎn),∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯(cuò)誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個(gè),故選C.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應(yīng)用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.2、D【解析】

先計(jì)算出這個(gè)隊(duì)共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個(gè)隊(duì)共有1+4+3+2+2=12人,這個(gè)隊(duì)隊(duì)員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點(diǎn)睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.3、A【解析】分析:根據(jù)數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值的定義,在數(shù)軸上,點(diǎn)﹣2到原點(diǎn)的距離是2,所以﹣2的絕對值是2,故選A.4、C【解析】

設(shè)B點(diǎn)的坐標(biāo)為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點(diǎn)坐標(biāo),根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設(shè)B點(diǎn)的坐標(biāo)為(a,b),∵BD=3AD,∴D(,b),∵點(diǎn)D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點(diǎn)睛】考核知識點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.結(jié)合圖形,分析圖形面積關(guān)系是關(guān)鍵.5、B【解析】

由俯視圖所標(biāo)該位置上小立方塊的個(gè)數(shù)可知,左側(cè)一列有2層,右側(cè)一列有1層.【詳解】根據(jù)俯視圖中的每個(gè)數(shù)字是該位置小立方塊的個(gè)數(shù),得出主視圖有2列,從左到右的列數(shù)分別是2,1.故選B.【點(diǎn)睛】此題考查了三視圖判斷幾何體,用到的知識點(diǎn)是俯視圖、主視圖,關(guān)鍵是根據(jù)三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系.6、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A7、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件,本題屬于基礎(chǔ)題型.8、B【解析】試題解析:過點(diǎn)C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.9、A【解析】

根據(jù)題意可以列出相應(yīng)的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點(diǎn)睛】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系進(jìn)行列方程.10、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點(diǎn)睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項(xiàng)的系數(shù)不等于0”.12、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計(jì)算以及全等三角形的判定與性質(zhì)等知識,根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.13、.【解析】

直接利用勾股定理的逆定理結(jié)合三角形內(nèi)心的性質(zhì)進(jìn)而得出答案.【詳解】過點(diǎn)O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內(nèi)心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點(diǎn)睛】此題主要考查了基本作圖以及三角形的內(nèi)心,正確得出OD的長是解題關(guān)鍵.14、.【解析】

根據(jù)題意可知,擲一次骰子有6個(gè)可能結(jié)果,而點(diǎn)數(shù)為奇數(shù)的結(jié)果有3個(gè),所以點(diǎn)數(shù)為奇數(shù)的概率為.考點(diǎn):概率公式.15、3﹣或1【解析】

分兩種情況:情況一:如圖一所示,當(dāng)∠A'DE=90°時(shí);情況二:如圖二所示,當(dāng)∠A'ED=90°時(shí).【詳解】解:如圖,當(dāng)∠A'DE=90°時(shí),△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設(shè)AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當(dāng)∠A'ED=90°時(shí),△A'ED為直角三角形,此時(shí)∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設(shè)AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點(diǎn)睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質(zhì)等知識,添加輔助線,構(gòu)造直角三角形,學(xué)會(huì)運(yùn)用分類討論是解題的關(guān)鍵.16、(,1)或(﹣,1)【解析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點(diǎn)坐標(biāo)即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.當(dāng)y=1時(shí),x1-1=1,解得x=±當(dāng)y=-1時(shí),x1-1=-1,方程無解故P點(diǎn)的坐標(biāo)為()或(-)【點(diǎn)睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.17、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質(zhì),點(diǎn)M、N在對稱軸的右側(cè),y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點(diǎn)睛:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的性質(zhì),求得對稱軸,掌握二次函數(shù)圖象的性質(zhì)解決問題.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)256【解析】

(1)先利用切線的性質(zhì)得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進(jìn)而得出∠EAD=∠CAD,進(jìn)而判斷出△ADF≌△ADC,即可得出結(jié)論;(2)過點(diǎn)D作DG⊥AE,垂足為G.依據(jù)等腰三角形的性質(zhì)可得到EG=AG=1,然后在Rt△GEG中,依據(jù)銳角三角函數(shù)的定義可得到DG的長,然后依據(jù)勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據(jù)銳角三角函數(shù)的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點(diǎn)D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,圓的性質(zhì),全等三角形的判定和性質(zhì),利用等式的性質(zhì)和同角的余角相等判斷角相等是解本題的關(guān)鍵.19、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】

(1)將A(-1,0),B(0,1),C(1,0)三點(diǎn)的坐標(biāo)代入y=ax2+bx+c,運(yùn)用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運(yùn)用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點(diǎn)的坐標(biāo)為(x,-x2-2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當(dāng)x=-時(shí),PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進(jìn)而得到P點(diǎn)的坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點(diǎn)的坐標(biāo)為(x,﹣x2﹣2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當(dāng)x=﹣時(shí),PE最大,△PDE的周長也最大.當(dāng)x=﹣時(shí),﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點(diǎn)P坐標(biāo)為(﹣,)時(shí),△PDE的周長最大.【點(diǎn)睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有運(yùn)用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強(qiáng),難度適中.20、C【解析】

利用二次根式有意義的條件和判別式的意義得到,然后解不等式組即可.【詳解】根據(jù)題意得,解得-3≤m≤1.故選C.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.21、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)利用等腰直角三角形的性質(zhì)得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點(diǎn):1、平移變換;2、位似變換;3、勾股定理的逆定理22、(1)證明見解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論