版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南省益陽市赫山區(qū)赫山萬源中學數(shù)學九上期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結(jié)論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個2.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°3.如圖,△ABC中,DE∥BC,則下列等式中不成立的是()A. B. C. D.4.如圖,在平面直角坐標系中,點O為坐標原點,平行四邊形OABC的頂點A在反比例函數(shù)上,頂點B在反比例函數(shù)上,點C在x軸的正半軸上,則平行四邊形OABC的面積是()A. B. C.4 D.65.如圖,切于兩點,切于點,交于.若的周長為,則的值為()A. B. C. D.6.在校田徑運動會上,小明和其他三名選手參加100米預(yù)賽,賽場共設(shè)1,2,3,4四條跑道,選手以隨機抽簽的方式?jīng)Q定各自的跑道.若小明首先抽簽,則小明抽到1號跑道的概率是()A. B. C. D.7.如圖,在平面直角坐標系中,⊙O的半徑為1,則直線與⊙O的位置關(guān)系是()A.相離 B.相切 C.相交 D.以上三種情況都有可能8.如圖所示,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結(jié)論:①;②;③方程的兩個根是;④方程有一個實根大于;⑤當時,隨增大而增大.其中結(jié)論正確的個數(shù)是()A.個 B.個 C.個 D.個9.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣110.有一組數(shù)據(jù):4,6,6,6,8,9,12,13,這組數(shù)據(jù)的中位數(shù)為()A.6 B.7 C.8 D.9二、填空題(每小題3分,共24分)11.如圖,△ABC繞點B逆時針方向旋轉(zhuǎn)到△EBD的位置,∠A=20°,∠C=15°,E、B、C在同一直線上,則旋轉(zhuǎn)角度是_______.12.在平面直角坐標系中,已知點,以原點為位似中心,相似比為.把縮小,則點的對應(yīng)點的坐標分別是_____,_____.13.如圖,直線AB與CD相交于點O,OA=4cm,∠AOC=30°,且點A也在半徑為1cm的⊙P上,點P在直線AB上,⊙P以1cm/s的速度從點A出發(fā)向點B的方向運動_________s時與直線CD相切.14.如圖,在邊長為2的正方形中,動點,分別以相同的速度從,兩點同時出發(fā)向和運動(任何一個點到達停止),在運動過程中,則線段的最小值為________.15.分式方程=1的解為_____.16.已知二次函數(shù)y=(x-2)2+3,當x_______________時,y17.中,若,,,則的面積為________.18.在平面直角坐標系中,拋物線y=x2的圖象如圖所示.已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______.三、解答題(共66分)19.(10分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標.20.(6分)解答下列問題:(1)計算:;(2)解方程:;21.(6分)已知在△ABC中,∠A=∠B=30°.(1)尺規(guī)作圖:在線段AB上找一點O,以O(shè)為圓心作圓,使⊙O經(jīng)過A,C兩點;(2)在(1)中所作的圖中,求證:BC是⊙O的切線.22.(8分)已知關(guān)于x的方程x2+(2m+1)x+m(m+1)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)已知方程的一個根為x=1,求代數(shù)式m2+m﹣5的值.23.(8分)如圖,一艘船由A港沿北偏東65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.24.(8分)如圖,是⊙的直徑,是⊙的切線,點為切點,與⊙交于點,點是的中點,連結(jié).(1)求證:是⊙的切線;(2)若,,求陰影部分的面積.25.(10分)如圖1,直線y=2x+2分別交x軸、y軸于點A、B,點C為x軸正半軸上的點,點D從點C處出發(fā),沿線段CB勻速運動至點B處停止,過點D作DE⊥BC,交x軸于點E,點C′是點C關(guān)于直線DE的對稱點,連接EC′,若△DEC′與△BOC的重疊部分面積為S,點D的運動時間為t(秒),S與t的函數(shù)圖象如圖2所示.(1)VD,C坐標為;(2)圖2中,m=,n=,k=.(3)求出S與t之間的函數(shù)關(guān)系式(不必寫自變量t的取值范圍).26.(10分)如圖,AB與⊙O相切于點B,AO及AO的延長線分別交⊙O于D、C兩點,若∠A=40°,求∠C的度數(shù).
參考答案一、選擇題(每小題3分,共30分)1、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側(cè)得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進行判斷;利用和不等式的性質(zhì)可對④進行判斷.【詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.2、D【分析】利用圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)即可得出.【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.【點睛】本題考查切線的性質(zhì)定理,熟練掌握圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)是解題的關(guān)鍵.3、B【分析】根據(jù)兩直線平行,對應(yīng)線段成比例即可解答.【詳解】∵DE∥BC,∴△ADE∽△ABC,=,∴,∴選項A,C,D成立,故選:B.【點睛】本題考查平行線分線段成比例的知識,解題的關(guān)鍵是熟練掌握平行線分線段成比例定理.4、C【分析】作BD⊥x軸于D,延長BA交y軸于E,然后根據(jù)平行四邊形的性質(zhì)和反比例函數(shù)系數(shù)k的幾何意義即可求得答案.【詳解】解:如圖作BD⊥x軸于D,延長BA交y軸于E,∵四邊形OABC是平行四邊形,∴AB∥OC,OA=BC,∴BE⊥y軸,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根據(jù)反比例函數(shù)系數(shù)k的幾何意義得,S矩形BDOE=5,S△AOE=,∴平行四邊形OABC的面積,故選:C.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義、平行四邊形的性質(zhì)等,有一定的綜合性5、A【分析】利用切線長定理得出,然后再根據(jù)的周長即可求出PA的長.【詳解】∵切于兩點,切于點,交于∴的周長為∴故選:A.【點睛】本題主要考查切線長定理,掌握切線長定理是解題的關(guān)鍵.6、B【詳解】解:小明選擇跑道有4種結(jié)果,抽到跑道1只有一種結(jié)果,小明抽到1號跑道的概率是故選B.【點睛】本題考查概率.7、B【詳解】解:如圖,在中,令x=0,則y=-;令y=0,則x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,過點O作OD⊥AB,則OD=BD=AB=×2=1.又∵⊙O的半徑為1,∴圓心到直線的距離等于半徑.∴直線y=x-2與⊙O相切.故選B.8、A【解析】根據(jù)二次函數(shù)的圖象與性質(zhì)進行解答即可.【詳解】解:∵拋物線開口方向向下∴a<0又∵對稱軸x=1∴∴b=-2a>0又∵當x=0時,可得c=3∴abc<0,故①正確;∵b=-2a>0,∴y=ax2-2ax+c當x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②錯誤;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正確;∵對稱軸x=1,與x軸的左交點的橫坐標小于0∴函數(shù)圖像與x軸的右交點的橫坐標大于2∴的另一解大于2,故④正確;由函數(shù)圖像可得,當時,隨增大而增大,故⑤正確;故答案為A.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),熟練運用二次函數(shù)的基本知識和正確運用數(shù)形結(jié)合思想是解答本題的關(guān)鍵.9、D【分析】根據(jù)到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據(jù)題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質(zhì)10、B【分析】先把這組數(shù)據(jù)按順序排列:4,6,6,6,8,9,12,13,根據(jù)中位數(shù)的定義可知:這組數(shù)據(jù)的中位數(shù)是6,8的平均數(shù).【詳解】∵一組數(shù)據(jù):4,6,6,6,8,9,12,13,∴這組數(shù)據(jù)的中位數(shù)是,故選:B.【點睛】本題考查中位數(shù)的計算,解題的關(guān)鍵是熟練掌握中位數(shù)的求解方法:先將數(shù)據(jù)按大小順序排列,當數(shù)據(jù)個數(shù)為奇數(shù)時,最中間的那個數(shù)據(jù)是中位數(shù),當數(shù)據(jù)個數(shù)為偶數(shù)時,居于中間的兩個數(shù)據(jù)的平均數(shù)才是中位數(shù).二、填空題(每小題3分,共24分)11、35°【分析】根據(jù)旋轉(zhuǎn)角度的概念可得∠ABE為旋轉(zhuǎn)角度,然后根據(jù)三角形外角的性質(zhì)可進行求解.【詳解】解:由題意得:∠ABE為旋轉(zhuǎn)角度,∵∠A=20°,∠C=15°,E、B、C在同一直線上,∴∠ABE=∠A+∠C=35°;故答案為35°.【點睛】本題主要考查旋轉(zhuǎn)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.12、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原點為位似中心,相似比為k,位似圖形對應(yīng)點的坐標的比等于k或?k,分別把A,B點的橫縱坐標分別乘以或?即可得到點B′的坐標.【詳解】∵以原點O為位似中心,相似比為,把△ABO縮小,∴的對應(yīng)點A′的坐標是(-1,2)或(1,-2),點B(?9,?3)的對應(yīng)點B′的坐標是(?3,?1)或(3,1),故答案為:(-1,2)或(1,-2);(-3,-1)或(3,1).【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或?k.13、1或5【分析】分類討論:當點P在射線OA上時,過點P作PE⊥AB于點E,根據(jù)切線的性質(zhì)得到PE=1cm,利用30度角所對的直角邊等于斜邊一半的性質(zhì)的OP=2PE=2cm,求出⊙P移動的距離為4-2-1=1cm,由此得到⊙P運動時間;當點P在射線OB上時,過點P作PF⊥AB于點F,同樣方法求出運動時間.【詳解】當點P在射線OA上時,如圖,過點P作PE⊥AB于點E,則PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移動的距離為4-2-1=1cm,∴運動時間為s;當點P在射線OB上時,如圖,過點P作PF⊥AB于點F,則PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移動的距離為4+2-1=5cm,∴運動時間為s;故答案為:1或5.【點睛】此題考查動圓問題,圓的切線的性質(zhì)定理,含30度角的直角邊等于斜邊一半的性質(zhì),解題中注意運用分類討論的思想解答問題.14、【解析】如圖(見解析),先根據(jù)正方形的性質(zhì)、三角形的判定定理與性質(zhì)得出,再根據(jù)正方形的性質(zhì)、角的和差得出,從而得出點P的運動軌跡,然后根據(jù)圓的性質(zhì)確認CP取最小值時點P的位置,最后利用勾股定理、線段的和差求解即可.【詳解】由題意得:由正方形的性質(zhì)得:,即在和中,,即點P的運動軌跡在以AB為直徑的圓弧上如圖,設(shè)AB的中點為點O,則點P在以點O為圓心,OA為半徑的圓上連接OC,交弧AB于點Q由圓的性質(zhì)可知,當點P與點Q重合時,CP取得最小值,最小值為CQ,即CP的最小值為故答案為:.【點睛】本題是一道較難的綜合題,考查了三角形全等的判定定理與性質(zhì)、圓的性質(zhì)(圓周角定理)、勾股定理等知識點,利用圓的性質(zhì)正確判斷出點P的運動軌跡以及CP最小時點P的位置是解題關(guān)鍵.15、x=2【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:去分母得:2+x﹣1=x2﹣1,即x2﹣x﹣2=0,分解因式得:(x﹣2)(x+1)=0,解得:x=2或x=﹣1,經(jīng)檢驗x=﹣1是增根,分式方程的解為x=2,故答案為:x=2【點睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程時注意要檢驗.16、<2(或x≤2).【解析】試題分析:對于開口向上的二次函數(shù),在對稱軸的左邊,y隨x的增大而減小,在對稱軸的右邊,y隨x的增大而增大.根據(jù)性質(zhì)可得:當x<2時,y隨x的增大而減小.考點:二次函數(shù)的性質(zhì)17、【分析】過點A作BC邊上的高交BC的延長線于點D,在中,利用三角函數(shù)求出AD長,再根據(jù)三角形面積公式求解即可.【詳解】解:如圖,作于點D,則,在中,所以的面積為故答案為:.【點睛】本題主要考查了三角函數(shù),靈活添加輔助線利用三角函數(shù)求出三角形的高是解題的關(guān)鍵.18、(-1010,10102)【分析】根據(jù)二次函數(shù)性質(zhì)可得出點A1的坐標,求得直線A1A2為y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標,根據(jù)坐標的變化找出變化規(guī)律,即可找出點A2019的坐標.【詳解】∵A點坐標為(1,1),
∴直線OA為y=x,A1(-1,1),
∵A1A2∥OA,
∴直線A1A2為y=x+2,
解得或,
∴A2(2,4),
∴A3(-2,4),
∵A3A4∥OA,
∴直線A3A4為y=x+6,
解得或,
∴A4(3,9),
∴A5(-3,9)
…,
∴A2019(-1010,10102),
故答案為(-1010,10102).【點睛】此題考查二次函數(shù)圖象上點的坐標特征、一次函數(shù)的圖象以及交點的坐標,根據(jù)坐標的變化找出變化規(guī)律是解題的關(guān)鍵.三、解答題(共66分)19、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據(jù)對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標,從而求出D的坐標算出BD的解析式,根據(jù)題意畫出圖形,設(shè)出P、G的坐標代入三角形的面積公式得出一元二次方程,聯(lián)立方程組解出即可;(3)分類討論①當AM是正方形的邊時,(ⅰ)當點M在y軸左側(cè)時(N在下方),(ⅱ)當點M在y軸右側(cè)時,②當AM是正方形的對角線時,分別求出結(jié)果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設(shè)點P(x,),則點G(x,).∴,當x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯(lián)立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當AM是正方形的邊時,(ⅰ)當點M在y軸左側(cè)時(N在下方),如圖2,當點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,當x=時,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).當x=時,同理可得N(,),當點M在第三象限時,同理可得N(,).(ⅱ)當點M在y軸右側(cè)時,如圖3,點M在第一象限時,過點M作MH⊥x軸于點H設(shè)AH=b,同理△AHM≌△MGN(AAS),則點M(﹣1+b,b﹣).將點M的坐標代入拋物線解析式可得:b=(負值舍去)yN=y(tǒng)M+GM=y(tǒng)M+AH=,∴N(﹣,).當點M在第四象限時,同理可得N(﹣,-).②當AM是正方形的對角線時,當點M在y軸左側(cè)時,過點M作MG⊥對稱軸于點G,設(shè)對稱軸與x軸交于點H,如圖1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),設(shè)點N(﹣,π),則點M(﹣,),將點M的坐標代入拋物線解析式可得,(舍去),∴N(,),當點M在y軸右側(cè)時,同理可得N(,).綜上所述:N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣).【點睛】本題考查二次函數(shù)與一次函數(shù)的綜合題型,關(guān)鍵在于熟練掌握設(shè)數(shù)法,合理利用相似全等等基礎(chǔ)知識.20、(1);(2),【分析】(1)先按照二次根式的乘除法計算,然后去條絕對值,再計算加減法;(2)采用配方法解方程即可.【詳解】解:(1)原式;(2)∴,【點睛】本題考查了二次根式的混合運算與解一元二次方程,熟練掌握二次根式的乘除運算法則和配方法是解題的關(guān)鍵.21、(1)見解析;(2)見解析【分析】(1)作AC的垂直平分線MN交AB于點O,以O(shè)為圓心,OA為半徑作⊙O即可.(2)根據(jù)題目中給的已知條件結(jié)合題(1)所作的圖綜合應(yīng)用證明∠OCB=90°即可解決問題.【詳解】(1)解:如圖,⊙O即為所求.(2)證明:連接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相對AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切線.【點睛】本題主要考查的是尺規(guī)作圖的方法以及圓的綜合應(yīng)用,注意在尺規(guī)作圖的時候需要保留作圖痕跡.22、(1)方程總有兩個不相等的實數(shù)根;(2)-2.【分析】(1)根據(jù)一元二次方程的根的判別式即可得出△=1>1,由此即可證出方程總有兩個不相等的實數(shù)根;
(2)將x=1代入原方程求出m的值,再將m值代入代數(shù)式中求值即可.【詳解】解:(1)∵關(guān)于x的一元二次方程x2+(2m+1)x+m(m+1)=1.∴△=(2m+1)2﹣4m(m+1)=1>1,∴方程總有兩個不相等的實數(shù)根;(2)∵x=1是此方程的一個根,∴把x=1代入方程中得到m(m+1)=1,把m(m+1)=1代入得m2+m﹣2=-2.【點睛】本題考查了根的判別式及用整體代入法求代數(shù)式的值,熟練掌握“當一元二次方程根的判別式△>1時,方程有兩個不相等的實數(shù)根.”是解題的關(guān)鍵.23、(90+30)km.【分析】過B作BE⊥AC于E,在Rt△ABE中,由∠ABE=45°,AB=,可得AE=BE=AB=90km,在Rt△CBE中,由∠ACB=60°,可得CE=BE=30km,繼而可得AC=AE+CE=90+30.【詳解】解:根據(jù)題意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90,過B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C兩港之間的距離為(90+30)km.【點睛】本題考查了解直角三角形的應(yīng)用,方向角問題,三角形的內(nèi)角和,是基礎(chǔ)知識比較簡單.24、(1)見解析;(2).【解析】(1)連結(jié)OC,AC,由切線性質(zhì)知Rt△ACP中DC=DA,即∠DAC=∠DCA,再結(jié)合∠OAC=∠OCA知∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,據(jù)此即可得證;
(2)先求出OA=1,BP=2AB=4,AD=,再根據(jù)S陰影=S四邊形OADC-S扇形AOC即可得.【詳解】(1)連結(jié),如圖所示:∵是⊙的直徑,是切線,∴,,∵點是的中點,∴,∴,又∵,∴,∴,即,∴是⊙的切線;(2)∵在中,,∴,∴,∴,,,∴.【點睛】本題考查了切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)、直角三角形的性質(zhì)、扇形面積的計算等知識點.25、(1)點D的運動速度為1單位長度/秒,點C坐標為(4,0).(2);;.(3)①當點C′在線段BC上時,S=t2;②當點C′在CB的延長線上,S=?t2+t?;③當點E在x軸負半軸,S=t2?4t+1.【分析】(1)根據(jù)直線的解析式先找出點B的坐標,結(jié)合圖象可知當t=時,點C′與點B重合,通過三角形的面積公式可求出CE的長度,結(jié)合勾股定理可得出OE的長度,由OC=OE+EC可得出OC的長度,即得出C點的坐標,再由勾股定理得出BC的長度,根據(jù)CD=BC,結(jié)合速度=路程÷時間即可得出結(jié)論;(2)結(jié)合D點的運動以及面積S關(guān)于時間t的函數(shù)圖象的拐點,即可得知當“當t=k時,點D與點B重合,當t=m時,點E和點O重合”,結(jié)合∠C的正余弦值通過解直角三角形即可得出m、k的值,再由三角形的面積公式即可得出n的值;(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①通過解直角三角形以及三角形的面積公式即可得出此種情況下S關(guān)于t的函數(shù)關(guān)系式;②由重合部分的面積=S△CDE?S△BC′F,通過解直角三角形得出兩個三角形的各邊長,結(jié)合三角形的面積公式即可得出結(jié)論;③通過邊與邊的關(guān)系以及解直角三角形找出BD和DF的值,結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】(1)令x=0,則y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023六年級數(shù)學上冊 六 百分數(shù)第7課時 用方程解百分數(shù)問題 2列方程解決稍復(fù)雜的百分數(shù)實際問題(2)教學實錄 蘇教版
- 文明禮儀演講稿模板集合5篇
- 物理教研組工作計劃三篇
- 五年級體育下冊 第十七課 游戲課:踏石過河、攻關(guān)教學實錄
- 第6課 拉拉手交朋友 一年級道德與法治上冊(2024版)教學實錄
- 第3單元第11課《趕赴火場-“系統(tǒng)時間”檢測模塊的應(yīng)用》教學實錄2023-2024學年清華大學版(2012)初中信息技術(shù)九年級下冊
- 邀請活動的邀請函合集七篇
- 圣誕節(jié)活動總結(jié)范文5篇
- -轉(zhuǎn)正述職報告
- 后勤年終工作總結(jié)15篇
- 常見皮膚病與護理
- 安全生產(chǎn)法律法規(guī)注冊安全工程師考試(初級)試題與參考答案(2024年)一
- 2024年人教版小學六年級上學期期末英語試題與參考答案
- 華東師范大學《法學導論(Ⅰ)》2023-2024學年第一學期期末試卷
- 2024年公文寫作基礎(chǔ)知識競賽試題庫及答案(共130題)
- 空壓機操作安全培訓
- 數(shù)據(jù)管理制度完整
- 醫(yī)療組長競聘
- 防止食品安全傳染病
- 3外架專項施工方案
- 工程施工日志60篇
評論
0/150
提交評論