版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省湛江市雷州市2025屆數(shù)學九上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖是一個可以自由轉動的轉盤,轉盤分成黑、白兩種顏色指針的位置固定,轉動的轉盤停止后,指針恰好指向白色扇形的穊率為(指針指向OA時,當作指向黑色扇形;指針指OB時,當作指向白色扇形),則黑色扇形的圓心角∠AOB=()A.40° B.45° C.50° D.60°2.正六邊形的周長為6,則它的面積為()A. B. C. D.3.如圖,4×2的正方形的網(wǎng)格中,在A,B,C,D四個點中任選三個點,能夠組成等腰三角形的概率為()A.1 B. C. D.4.拋物線y=ax2+bx+c(a≠0)的圖象如圖,則下列結論中正確的是()A.a(chǎn)b<0 B.a(chǎn)+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>05.如圖,在△ABC中,AB的垂直平分線交BC于D,AC的中垂線交BC于E,∠DAE=20°,則∠BAC的度數(shù)為()A.70° B.80° C.90° D.100°6.如圖,在△ABC中,點D、E分別在邊BA、CA的延長線上,=2,那么下列條件中能判斷DE∥BC的是()A. B. C. D.7.一個不透明的布袋中有分別標著數(shù)字1,2,3,4的四個乒乓球,現(xiàn)從袋中隨機摸出兩個乒乓球,則這兩個乒乓球上的數(shù)字之和大于5的概率為()A. B. C. D.8.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(
)A. B. C. D.9.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°10.如圖,一個圓柱體在正方體上沿虛線從左向右平移,平移過程中不變的是()A.主視圖 B.左視圖C.俯視圖 D.主視圖和俯視圖二、填空題(每小題3分,共24分)11.函數(shù)是反比例函數(shù),且圖象位于第二、四象限內,則n=____.12.關于x的方程的兩個根是﹣2和1,則nm的值為_____.13.如圖,在△ABC中,點D、E分別在△ABC的兩邊AB、AC上,且DE∥BC,如果,,,那么線段BC的長是______.14.如圖,點A、B、C在半徑為9的⊙O上,的長為,則∠ACB的大小是___.15.在一個暗箱里放有m個除顏色外其他完全相同的小球,這m個小球中紅球只有4個,每次將球攪勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算m大約是_____.16.如圖,在平面直角坐標系中,已知點A(2,4),B(4,1),以原點O為位似中心,在點O的異側將△OAB縮小為原來的,則點B的對應點的坐標是________.17.在△ABC和△A'B'C'中,===,△ABC的周長是20cm,則△A'B'C的周長是_____.18.如圖,⊙O是正五邊形ABCDE的外接圓,則∠CAD=_____.三、解答題(共66分)19.(10分)已知二次函數(shù)y=﹣x2+2x+m.(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;(2)如圖,二次函數(shù)的圖象過點A(-1,0),與y軸交于點C,求直線BC與這個二次函數(shù)的解析式;(3)在直線BC上方的拋物線上有一動點D,DEx軸于E點,交BC于F,當DF最大時,求點D的坐標,并寫出DF最大值.20.(6分)如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸、垂足為點,反比例函數(shù)的圖象經(jīng)過的中點、且與相交于點.經(jīng)過、兩點的一次函數(shù)解析式為,若點的坐標為,.且.(1)求反比例函數(shù)的解析式;(2)在直線上有一點,的面積等于.求滿足條件的點的坐標;(3)請觀察圖象直接寫出不等式的解集.21.(6分)圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.73,結果精確到0.01米)22.(8分)某化工廠要在規(guī)定時間內搬運1200噸化工原料.現(xiàn)有,兩種機器人可供選擇,已知型機器人比型機器人每小時多搬運30噸型,機器人搬運900噸所用的時間與型機器人搬運600噸所用的時間相等.(1)求兩種機器人每小時分別搬運多少噸化工原料.(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,型機器人又有了新的搬運任務需離開,但必須保證這批化工原料在11小時內全部搬運完畢.問型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內完成?23.(8分)某商店經(jīng)營兒童益智玩具,已知成批購進時的單價是20元.調查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數(shù)),月銷售利潤為y元.(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍.(2)每件玩具的售價定為多少元時,月銷售利潤恰為2520元?(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?24.(8分)如圖,在矩形的邊上取一點,連接并延長和的延長線交于點,過點作的垂線與的延長線交于點,與交于點,連接.(1)當且時,求的長;(2)求證:;(3)連接,求證:.25.(10分)如圖,在△ABC中,AB=10,AC=8,D、E分別是AB、AC上的點,且AD=4,∠BDE+∠C=180°.求AE的長.26.(10分)解一元二次方程:x2+4x﹣5=1.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)針恰好指向白色扇形的概率得到黑、白兩種顏色的扇形的面積比為1:7,計算即可.【詳解】解:∵指針恰好指向白色扇形的穊率為,∴黑、白兩種顏色的扇形的面積比為1:7,∴∠AOB=×360°=45°,故選:B.【點睛】本題考查的知識點是求圓心角的度數(shù),根據(jù)概率得出黑、白兩種顏色的扇形的面積比為1:7是解此題的關鍵.2、B【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為6,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等邊三角形,∵正六邊形ABCDEF的周長為6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴該六邊形的面積為:.故選:B.【點睛】此題考查了圓的內接六邊形的性質與等邊三角形的判定與性質.此題難度不大,注意掌握數(shù)形結合思想的應用.3、B【分析】根據(jù)題意,先列舉所有的可能結果,然后選取能組成等腰三角形的結果,根據(jù)概率公式即可求出答案.【詳解】解:根據(jù)題意,在A,B,C,D四個點中任選三個點,有:△ABC、△ABD、△ACD、△BCD,共4個三角形;其中是等腰三角形的有:△ACD、△BCD,共2個;∴能夠組成等腰三角形的概率為:;故選:B.【點睛】本題考查了列舉法求概率,等腰三角形的性質,勾股定理與網(wǎng)格問題,解題的關鍵是熟練掌握列舉法求概率,以及正確得到等腰三角形的個數(shù).4、D【解析】利用拋物線開口方向得到a>0,利用拋物線的對稱軸在y軸的左側得到b>0,則可對A選項進行判斷;利用x=1時,y=2得到a+b=2﹣c,則a+b+2c﹣2=c<0,于是可對B選項進行判斷;利用拋物線與x軸有2個交點可對C選項進行判斷;利用﹣1<﹣<0可對D選項進行判斷.【詳解】∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側,∴a、b同號,即b>0,∴ab>0,故A選項錯誤;∵拋物線與y軸的交點在x軸下方,∴c<0,∵x=1時,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B選項錯誤;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,故C選項錯誤;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D選項正確.故選:D.【點睛】本題主要考查二次函數(shù)解析式的系數(shù)的幾何意義,掌握二次函數(shù)解析式的系數(shù)與圖象的開口方向,對稱軸,圖象與坐標軸的交點的位置關系,是解題的關鍵.5、D【分析】先根據(jù)垂直平分線的特點得出∠B=∠DAB,∠C=∠EAC,然后根據(jù)△ABC的內角和及∠DAE的大小,可推導出∠DAB+∠EAC的大小,從而得出∠BAC的大小.【詳解】如下圖∵DM是線段AB的垂直平分線,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故選:D.【點睛】本題考查垂直平分線的性質,解題關鍵是利用整體思想,得出∠DAB+∠EAC=80°.6、D【分析】只要證明,即可解決問題.【詳解】解:A.,可得AE:AC=1:1,與已知不成比例,故不能判定B.,可得AC:AE=1:1,與已知不成比例,故不能判定;C選項與已知的,可得兩組邊對應成比例,但夾角不知是否相等,因此不一定能判定;D.,可得DE//BC,故選D.【點睛】本題考查平行線的判定,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.7、B【解析】列表得:
1
2
3
4
1
-
2+1=3
3+1=4
4+1=5
2
1+2=3
-
3+2=5
4+2=6
3
1+3=4
2+3=5
-
4+3=7
4
1+4=5
2+4=6
3+4=7
-
∵共有12種等可能的結果,這兩個乒乓球上的數(shù)字之和大于5的有4種情況,∴這兩個乒乓球上的數(shù)字之和大于5的概率為:.故選B.8、A【分析】畫出圖像,勾股定理求出AB的長,表示cosB即可解題.【詳解】解:如下圖,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故選A.【點睛】本題考查了三角函數(shù)的求值,屬于簡單題,熟悉余弦函數(shù)的表示是解題關鍵.9、B【詳解】解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B10、B【解析】主視圖是從正面觀察得到的圖形,左視圖是從左側面觀察得到的圖形,俯視圖是從上面觀察得到的圖形,結合圖形即可作出判斷.解:根據(jù)圖形,可得:平移過程中不變的是的左視圖,變化的是主視圖和俯視圖.故選B.二、填空題(每小題3分,共24分)11、-1.【分析】根據(jù)反比例函數(shù)的定義與性質解答即可.【詳解】根據(jù)反比函數(shù)的解析式y(tǒng)=(k≠0),故可知n+1≠0,即n≠-1,且n1-5=-1,解得n=±1,然后根據(jù)函數(shù)的圖像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-1.故答案為:-1【點睛】本題考查反比例函數(shù)的定義與性質,熟記定義與性質是解題的關鍵.12、﹣1【分析】由方程的兩根結合根與系數(shù)的關系可求出m、n的值,將其代入nm中即可求出結論.【詳解】解:∵關于x的方程的兩個根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案為:﹣1.【點睛】本題主要考查一元二次方程根與系數(shù)的關系,熟練掌握根與系數(shù)的關系是解題的關鍵.13、;【分析】根據(jù)DE∥BC可得,再由相似三角形性質列比例式即可求解.【詳解】解:,,,又∵,,,,解得:故答案為:.【點睛】本題主要考查了平行線分線段成比例定理的應用,找準對應線段是解題的關鍵.14、20°.【分析】連接OA、OB,由弧長公式的可求得∠AOB,然后再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB.【詳解】解:連接OA、OB,由弧長公式的可求得∠AOB=40°,再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB=20°.故答案為:20°【點睛】本題考查弧長公式;圓周角定理,題目難度不大,掌握公式正確計算是解題關鍵.15、1【分析】由于摸到紅球的頻率穩(wěn)定在25%,由此可以確定摸到紅球的概率為25%,而m個小球中紅球只有4個,由此即可求出m.【詳解】∵摸到紅球的頻率穩(wěn)定在25%,∴摸到紅球的概率為25%,而m個小球中紅球只有4個,∴推算m大約是4÷25%=1.故答案為:1.【點睛】本題考查了利用頻率估計概率,其中解題時首先通過實驗得到事件的頻率,然后利用頻率估計概率即可解決問題.16、(-2,)【分析】平面直角坐標系中,如果位似變換是以原點為位似中心且在點O的異側,相似比為,那么位似圖形對應點的坐標的比等于解答.【詳解】以O為位似中心且在點O的異側,把△OAB縮小為原來的,
則點B的對應點的坐標為,
即,
故答案為:.【點睛】本題考查的是位似變換的性質,平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.17、30cm.【分析】利用相似三角形的性質解決問題即可.【詳解】,的周長:的周長=2:3的周長為20cm,的周長為30cm,故答案為:30cm.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的判定及性質是解題的關鍵.18、36°.【分析】由正五邊形的性質得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出==,由圓周角定理即可得出答案.【詳解】∵⊙O是正五邊形ABCDE的外接圓,∴∠BAE=(n﹣2)×180°=(5﹣2)×180°=108°,BC=CD=DE,∴==,∴∠CAD=×108°=36°;故答案為:36°.【點睛】本題主要考查了正多邊形和圓的關系,以及圓周角定理的應用;熟練掌握正五邊形的性質和圓周角定理是解題的關鍵.三、解答題(共66分)19、(1)m>-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判別式解答即可;(2)將點A的坐標代入拋物線y=-x2+2x+m即可求出解析式,由拋物線的解析式求出點B(3,0),設直線BC的解析式為y=kx+b,將B(3,0),C(0,3)代入y=kx+b中即可求出直線BC的解析式;(3)由點D在拋物線上,設坐標為(x,-x2+2x+3),F(xiàn)在直線AB上,坐標為(x,-x+3),得到DF=-x2+2x+3-(-x+3)=-x2+3x=,利用頂點式解析式的性質解答即可.【詳解】(1)當拋物線與x軸有兩個交點時,?>0,即4+4m>0,∴m>-1;(2)∵點A(-1,0)在拋物線y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴拋物線解析式為y=-x2+2x+3,且C(0,3),當x=0時,-x2+2x+3=0,解得x=-1,或x=3,∴B(3,0),設直線BC的解析式為y=kx+b,將B(3,0),C(0,3)代入y=kx+b中,得:,解得,∴直線AB的解析式為y=-x+3;(3)點D在拋物線上,設坐標為(x,-x2+2x+3),F(xiàn)在直線AB上,坐標為(x,-x+3),∴DF=-x2+2x+3-(-x+3)=-x2+3x=,∴當時,DF最大,為,此時D的坐標為().【點睛】此題考查了利用判別式已知拋物線與坐標軸的交點個數(shù)求未知數(shù)的取值范圍,利用待定系數(shù)法求函數(shù)解析式,利用頂點式解析式的性質求出線段的最值.20、(1)y1=;(2)P(2,4)或(﹣14,﹣4);(3)x<﹣4或﹣2<x<1.【分析】(1)把D(-4,1)代入(x<1),利用待定系數(shù)法即可求得;(2)根據(jù)題意求得C點的坐標,進而根據(jù)待定系數(shù)法求得直線CD的解析式,根據(jù)三角形的面積求得P點的縱坐標,代入直線解析式即可求得橫坐標;
(3)根據(jù)兩函數(shù)圖象的上下位置關系即可得出不等式的解集.【詳解】(1)把(﹣4,1)代入(x<1),解得:k1=﹣4,∴反比例函數(shù)的解析式為:y1=;(2)由點D的坐標為(﹣4,1),且AD=3,∴點A的坐標為(﹣4,4),∵點C為OA的中點,∴點C的坐標為(﹣2,2),將點D(﹣4,1)和點C(﹣2,2)代入y2=k2x+b,得k2=,b=3,即y2=,設點P的坐標為(m,n)∵△POB的面積等于8,OB=4,∴=8,∴即,代入y2=,得到點P的坐標為(2,4)或(﹣14,﹣4);(3)觀察函數(shù)圖象可知:當x<﹣4或﹣2<x<1時,反比例函數(shù)圖象在一次函數(shù)圖象的上方,∴不等式的解集為:x<﹣4或﹣2<x<1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征以及待定系數(shù)法求函數(shù)解析式,解題的關鍵是求得C點的坐標.21、(1)3.9米;(2)貨車能安全通過.【解析】(1)過M作MN⊥AB于N,交BA的延長線于N,在Rt△OMN中,求出ON的長,即可求得BN的長,即可求得點M到地面的距離;(2)左邊根據(jù)要求留0.65米的安全距離,即取CE=0.65,車寬EH=2.55,計算高GH的長即可,與3.5作比較,可得結論.【詳解】(1)如圖,過M作MN⊥AB于N,交BA的延長線于N,在Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ONOM=0.6,∴NB=ON+OB=3.3+0.6=3.9,即點M到地面的距離是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,過H作GH⊥BC,交OM于G,過O作OP⊥GH于P,∵∠GOP=30°,∴tan30°,∴GPOP0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴貨車能安全通過.【點睛】本題考查了解直角三角形的應用、銳角三角函數(shù)等知識,正確添加輔助線,構建直角三角形是解題的關鍵.22、(1)型機器人每小時搬運90噸化工原料,型機器人每小時搬運60噸化工原料;(2)A型機器人至少工作6小時,才能保證這批化工原料在規(guī)定的時間內完成.【分析】(1)設B型機器人每小時搬運x噸化工原料,則A型機器人每小時搬運(x+30)噸化工原料,根據(jù)A型機器人搬運900噸所用的時間與B型機器人搬運600噸所用的時間相等建立方程求出其解就可以得出結論.
(2)設A型機器人工作t小時,根據(jù)這批化工原料在11小時內全部搬運完畢列出不等式求解.【詳解】解:(1)設型機器人每小時搬運噸化工原料,則型機器人每小時搬運噸化工原料,根據(jù)題意,得,解得.經(jīng)檢驗,是所列方程的解.當時,.答:型機器人每小時搬運90噸化工原料,型機器人每小時搬運60噸化工原料;(2)設型機器人工作小時,根據(jù)題意,得,解得.答:A型機器人至少工作6小時,才能保證這批化工原料在規(guī)定的時間內完成.【點睛】本題考查的是分式方程應用題和列不等式求解問題,找相等關系式是解題關鍵,(1)根據(jù)A型機器人搬運900千克所用的時間與B型機器人搬運600千克所用的時間相等建立方程,分式方程應用題的解需要雙檢,一檢是否是方程的根,二檢是否符合題意;(2)總工作量-A型機器人的工作量≤B型機器人11小時的工作量,列不等式求解.23、(1)y=﹣10x2+130x+2300,0<x≤10且x為正整數(shù);(2)每件玩具的售價定為32元時,月銷售利潤恰為2520元;(3)每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【分析】(1)根據(jù)題意知一件玩具的利潤為(30+x-20)元,月銷售量為(230-10x),然后根據(jù)月銷售利潤=一件玩具的利潤×月銷售量即可求出函數(shù)關系式.(2)把y=2520時代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成頂點式,求得當x=6.5時,y有最大值,再根據(jù)0<x≤10且x為正整數(shù),分別計算出當x=6和x=7時y的值即可.【詳解】(1)根據(jù)題意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+23
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國結腸鏡行業(yè)市場深度分析及發(fā)展前景預測報告
- 項目開發(fā)總結報告(合集五)
- 方型太陽能警示樁行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 商場項目可行性報告
- 2024河南其他電氣機械及器材制造市場前景及投資研究報告
- 2025年秋千項目可行性研究報告
- 2025年半導體封裝行業(yè)研究報告(附下載)
- 2025辦公設備維修合同
- 2025年中國疼痛緩解治療儀市場全面調研及行業(yè)投資潛力預測報告
- GB 19272-2024室外健身器材的安全通用要求
- 2024版企業(yè)股權收購并購重組方案合同3篇
- 北師大版五年級數(shù)學下冊第3單元第3課時分數(shù)乘法(三)課件
- 2024AIGC創(chuàng)新應用洞察報告
- 統(tǒng)編版2024-2025學年三年級上冊語文期末情景試卷(含答案)
- 2024北京通州初三(上)期末數(shù)學試卷(含答案解析)
- 市場營銷習題庫(附參考答案)
- 2025新外研社版英語七年級下單詞默寫表
- 2024年馬拉松比賽項目合作計劃書
- 2024年演出經(jīng)紀人資格《思想政治與法律基礎》考前必刷必練題庫500題(含真題、必會題)
- 苗圃購銷合同范本
評論
0/150
提交評論