版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.寒假即將來臨,小明要從甲、乙、丙三個社區(qū)中隨機(jī)選取一個社區(qū)參加綜合實踐活動,那么小明選擇到甲社區(qū)參加實踐活動的可能性為()A. B. C. D.2.用圖中兩個可自由轉(zhuǎn)動的轉(zhuǎn)盤做“配紫色”游戲:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)出紅色,另-個轉(zhuǎn)出藍(lán)色即可配成紫色,則可配成紫色的概率是()轉(zhuǎn)盤一轉(zhuǎn)盤二A. B. C. D.3.如圖,為的直徑,,為上的兩點,且為的中點,若,則的度數(shù)為()A. B. C. D.4.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標(biāo)為(0,2),則⊙C半徑是()A. B. C. D.25.已知點,,,在二次函數(shù)的圖象上,則,,的大小關(guān)系是()A. B. C. D.6.一個不透明的口袋中裝有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,隨機(jī)摸出一個小球后不放回,再隨機(jī)摸出一個小球,則兩次摸出的小球標(biāo)號之和等于6的概率為()A. B. C. D.7.已知反比例函數(shù),下列各點在此函數(shù)圖象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)8.使關(guān)于的二次函數(shù)在軸左側(cè)隨的增大而增大,且使得關(guān)于的分式方程有整數(shù)解的整數(shù)的和為()A.10 B.4 C.0 D.39.如圖,經(jīng)過原點的⊙與軸分別交于兩點,點是劣弧上一點,則()A.是銳角 B.是直角 C.是鈍角 D.大小無法確定10.圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每小題3分,共24分)11.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數(shù)為,則該直尺的寬度為____________.12.已知關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是__________.13.如圖,在Rt△ABC中,∠BCA=90o,∠BAC=30o,BC=4,將Rt△ABC繞A點順時針旋轉(zhuǎn)90o得到Rt△ADE,則BC掃過的陰影面積為___.14.用一根長為31cm的鐵絲圍成一個矩形,則圍成矩形面積的最大值是cm1.15.如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點O分斜邊AB為BO:OA=1:,將△BOC繞C點順時針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC=.16.點M(3,)與點N()關(guān)于原點對稱,則________.17.《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題“今有圓材埋在壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑為______寸.18.如圖,將含有45°角的直角三角板ABC(∠C=90°)繞點A順時針旋轉(zhuǎn)30°得到△AB′C′,連接BB′,已知AC=2,則陰影部分面積為_____.三、解答題(共66分)19.(10分)某校為了了解本校七年級學(xué)生課外閱讀的喜好,隨機(jī)抽取該校七年級部分學(xué)生進(jìn)行問卷調(diào)查(每人只選一種書籍).下圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:(1)這次活動一共調(diào)查了名學(xué)生;(2)在扇形統(tǒng)計圖中,“其他”所在扇形的圓心角等于度;(3)補(bǔ)全條形統(tǒng)計圖;(4)若該年級有600名學(xué)生,請你估計該年級喜歡“科普常識”的學(xué)生人數(shù)約是.20.(6分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C(1)求證:AE與⊙O相切于點A;(2)若AE∥BC,BC=2,AC=2,求AD的長.21.(6分)如圖,為了估算河的寬度,在河對岸選定一個目標(biāo)作為點A再在河的這邊選點B和C,使AB⊥BC,然后,再選點E,使EC⊥BC,用視線確定BC和AE的交點D.此時如果測得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.22.(8分)已知關(guān)于x的方程x2﹣(m+2)x+2m=1.(1)若該方程的一個根為x=1,求m的值;(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.23.(8分)在平面直角坐標(biāo)系xOy(如圖)中,拋物線y=ax2+bx+2經(jīng)過點A(4,0)、B(2,2),與y軸的交點為C.(1)試求這個拋物線的表達(dá)式;(2)如果這個拋物線的頂點為M,求△AMC的面積;(3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE=45°,求點E的坐標(biāo).24.(8分)已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點A(﹣1,0),C(0,3).(1)求二次函數(shù)的解析式;(2)在圖中,畫出二次函數(shù)的圖象;(3)根據(jù)圖象,直接寫出當(dāng)y≤0時,x的取值范圍.25.(10分)已知二次函數(shù).求證:不論為何實數(shù),此二次函數(shù)的圖像與軸都有兩個不同交點.26.(10分)如圖,AB為半圓O的直徑,點C在半圓上,過點O作BC的平行線交AC于點E,交過點A的直線于點D,且∠D=∠BAC(1)求證:AD是半圓O的切線;(2)求證:△ABC∽△DOA;(3)若BC=2,CE=,求AD的長.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】由小明要從甲、乙、丙三個社區(qū)中隨機(jī)選取一個社區(qū)參加綜合實踐活動,直接利用概率公式求解即可求得答案.【詳解】解:∵小明要從甲、乙、丙三個社區(qū)中隨機(jī)選取一個社區(qū)參加綜合實踐活動,
∴小明選擇到甲社區(qū)參加實踐活動的可能性為:.
故選:B.【點睛】本題考查概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、B【分析】將轉(zhuǎn)盤一平均分成3份,即將轉(zhuǎn)盤一標(biāo)“藍(lán)”的部分平均分成兩部分,分別記為藍(lán)、藍(lán),再利用列表法列出所有等可能事件,根據(jù)題意求概率即可.【詳解】解:將轉(zhuǎn)盤一標(biāo)“藍(lán)”的部分平均分成兩部分,分別記為藍(lán)、藍(lán),即轉(zhuǎn)盤-平均分成三等份,列表如下:紅紅藍(lán)黃紅(紅,紅)(紅,紅)(紅,藍(lán))(紅,黃)藍(lán)(藍(lán),紅)(藍(lán),紅)(藍(lán),藍(lán))(藍(lán),黃)藍(lán)(藍(lán),紅)(藍(lán),紅)(藍(lán),藍(lán))(藍(lán),黃)由表格可知,共有12種等可能的結(jié)果,其中能配成紫色的結(jié)果有5種,所以可配成紫色的概率是.故選B.【點睛】本題考查了概率,用列表法求概率時,必須是等可能事件,這是本題的易錯點,熟練掌握列表法是解題的關(guān)鍵.3、C【分析】根據(jù)垂徑定理的推論,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度數(shù),又由OC=OA,即可求得∠ACO的度數(shù)【詳解】∵AB為⊙O的直徑,C為的中點,
∴OC⊥AD,
∵∠BAD=20°,
∴∠AOC=90°-∠BAD=70°,
∵OA=OC,
∴∠ACO=∠CAO=故選:C.【點睛】此題考查了垂徑定理、等腰三角形的性質(zhì)以及直角三角形的性質(zhì).此題難度不大,解題的關(guān)鍵是C為的中點,根據(jù)垂徑定理的推論,即可求得OC⊥AD.4、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據(jù)90°的圓周角所對的弦是直徑,得AD是直徑,根據(jù)等弧所對的圓周角相等,得∠D=∠B=30°,運用解直角三角形的知識即可求解.5、D【分析】由拋物線開口向上且對稱軸為直線x=3知離對稱軸水平距離越遠(yuǎn),函數(shù)值越大,據(jù)此求解可得.【詳解】∵二次函數(shù)中a=1>0,∴拋物線開口向上,有最小值.∵x=?=3,∴離對稱軸水平距離越遠(yuǎn),函數(shù)值越大,∵由二次函數(shù)圖象的對稱性可知4?3<3?<3?1,∴.故選:D.【點睛】本題主要考查二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是掌握二次函數(shù)的圖象與性質(zhì).6、A【解析】畫樹狀圖得出所有的情況,根據(jù)概率的求法計算概率即可.【詳解】畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出的小球標(biāo)號之和等于6的有2種情況,∴兩次摸出的小球標(biāo)號之和等于6的概率故選A.【點睛】考查概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.7、B【解析】依次把各個選項的橫坐標(biāo)代入反比例函數(shù)的解析式中,得到縱坐標(biāo)的值,即可得到答案.【詳解】解:A.把x=3代入得:,即A項錯誤,B.把x=-2代入得:,即B項正確,C.把x=-2代入得:,即C項錯誤,D.把x=-3代入得:,即D項錯誤,故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,正確掌握代入法是解題的關(guān)鍵.8、A【分析】根據(jù)“二次函數(shù)在y軸左側(cè)y隨x的增大而增大”求出a的取值范圍,然后解分式方程,最后根據(jù)整數(shù)解及a的范圍即可求出a的值,從而得到結(jié)果.【詳解】∵關(guān)于的二次函數(shù)在軸左側(cè)隨的增大而增大,,解得,把兩邊都乘以,得,整理,得,當(dāng)時,,,∴使為整數(shù),且的整數(shù)的值為2、3、5,∴滿足條件的整數(shù)的和為.故選:A.【點睛】本題考查了二次函數(shù)的性質(zhì)與對稱軸,解分式方程,解分式方程時注意符號的變化.9、B【分析】根據(jù)圓周角定理的推論即可得出答案.【詳解】∵和對應(yīng)著同一段弧,∴,∴是直角.故選:B.【點睛】本題主要考查圓周角定理的推論,掌握圓周角定理的推論是解題的關(guān)鍵.10、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據(jù)端點A與B之間的距離為10cm,即可得到可以通過閘機(jī)的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點A與B之間的距離為10cm,∴通過閘機(jī)的物體的最大寬度為27+10+27=64(cm),故選C.【點睛】本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應(yīng)用廣泛,一是它可以當(dāng)作數(shù)進(jìn)行運算,二是具有三角函數(shù)的特點,在解直角三角形中應(yīng)用較多.二、填空題(每小題3分,共24分)11、【分析】連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.12、且【分析】根據(jù)根的判別式和一元一次方程的定義得到關(guān)于的不等式,求出的取值即可.【詳解】關(guān)于的一元二次方程有兩個不相等的實數(shù)根,∵,∴且,
解得:且,
故答案為:且.【點睛】本題考查了根的判別式和一元二次方程的定義,能根據(jù)題意得出關(guān)于的不等式是解此題的關(guān)鍵.13、4π【分析】先利用含30度的直角三角形三邊的關(guān)系得到AB=2BC=8,AC=BC=,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠CAE=∠BAD=90°,然后根據(jù)扇形的面積公式,利用BC掃過的陰影面積=S扇形BAD-S△CAE進(jìn)行計算.【詳解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC繞A點順時針旋轉(zhuǎn)90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC掃過的陰影面積=S扇形BAD-S△CAE=.故答案為:4π.【點睛】本題考查了扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=(其中l(wèi)為扇形的弧長);求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.也考查了旋轉(zhuǎn)的性質(zhì).14、2.【解析】試題解析:設(shè)矩形的一邊長是xcm,則鄰邊的長是(16-x)cm.則矩形的面積S=x(16-x),即S=-x1+16x,當(dāng)x=-時,S有最大值是:2.考點:二次函數(shù)的最值.15、105°.【分析】連接OQ,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,從而推出∠OAQ=90°,∠OCQ=90°,再根據(jù)特殊直角三角形邊的關(guān)系,分別求出∠AQO與∠OQC的值,可求出結(jié)果.【詳解】連接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,設(shè)BO=1,OA=,∴AQ=1,則tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案為105°.16、-6【分析】根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),列方程求解即可.【詳解】解:根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【點睛】本題考查關(guān)于原點對稱的點的坐標(biāo),掌握坐標(biāo)變化規(guī)律是本題的解題關(guān)鍵.17、1.【分析】設(shè)的半徑為,在中,,則有,解方程即可.【詳解】設(shè)的半徑為.在中,,則有,解得,∴的直徑為1寸,故答案為1.【點睛】本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.18、1【分析】在Rt△ABC中,可求出AB的長度,再根據(jù)含30°的直角三角形的性質(zhì)得到AB邊上的高,最后由S陰影=S△ABB′結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】過B′作B′D⊥AB于D,在Rt△ABC中,∠C=90°,∠ABC=45°,AC=1,∴AB′=AB=AC=,又∵∠ADB′=90°,∠BAB′=30°,∴B′D=AB′=,∴S陰影=S△ABC+S△ABB′?S△AB′C′=S△ABB′=××=1,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì)以及含30°的直角三角形性質(zhì),解題的關(guān)鍵是得出S陰影=S△ABB′.三、解答題(共66分)19、(1)200;(2)36;(3)補(bǔ)圖見解析;(4)180名.【分析】(1)根據(jù)條形圖可知喜歡閱讀“小說”的有80人,根據(jù)在扇形圖中所占比例得出調(diào)查學(xué)生總數(shù);(2)根據(jù)條形圖可知閱讀“其他”的有20人,根據(jù)總?cè)藬?shù)可求出它在扇形圖中所占比例;(3)求出第3組人數(shù)畫出圖形即可;(4)根據(jù)喜歡閱讀“科普常識”的學(xué)生所占比例,即可估計該年級喜歡閱讀“科普常識”的人數(shù).【詳解】解:(1)80÷40%=200(人),故這次活動一共調(diào)查了200名學(xué)生.(2)20÷200×360°=36°,故在扇形統(tǒng)計圖中,“其他”所在扇形的圓心角等于36°.(3)200-80-40-20=60(人),即喜歡閱讀“科普常識”的學(xué)生有60人,補(bǔ)全條形統(tǒng)計圖如圖所示:(4)60÷200×100%=30%,600×30%=180(人),故估計該年級喜歡閱讀“科普常識”的人數(shù)為180.20、(1)證明見解析;(2)AD=2.【解析】(1)如圖,連接OA,根據(jù)同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結(jié)論;(2)先證明OA⊥BC,由垂徑定理得:,F(xiàn)B=BC,根據(jù)勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,F(xiàn)B=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應(yīng)用,屬于基礎(chǔ)題,熟練掌握切線的判定方法是關(guān)鍵:有切線時,常?!坝龅角悬c連圓心得半徑,證垂直”.21、100米【分析】由兩角對應(yīng)相等可得△BAD∽△CED,利用對應(yīng)邊成比例可得兩岸間的大致距離AB.【詳解】∵AB⊥BC,EC⊥BC∴∠B=∠C=90°又∵∠ADB=∠EDC∴△ABD∽△ECD∴即∴AB=100答:兩岸向的大致距高AB為100米.【點睛】本題考查相似三角形的應(yīng)用;用到的知識點為:兩角對應(yīng)相等的兩三角形相似;相似三角形的對應(yīng)邊成比例.22、(2)2;(2)見解析【分析】(2)將x=2代入方程中即可求出答案.(2)根據(jù)根的判別式即可求出答案.【詳解】(2)將x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由題意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不論m取何實數(shù),該方程總有兩個實數(shù)根.【點睛】本題考查了一元二次方程,解答本題的關(guān)鍵是熟練運用根的判別式,本題屬于基礎(chǔ)題型.23、(1)y=-14x2+12x+2;(1)32【解析】(1)根據(jù)點A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(1)利用配方法可求出點M的坐標(biāo),利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),過點M作MH⊥y軸,垂足為點H,利用分割圖形求面積法可得出△AMC的面積;(3)連接OB,過點B作BG⊥x軸,垂足為點G,則△BGA,△OCB是等腰直角三角形,進(jìn)而可得出∠BAO=∠DBO,由∠DOB+∠BOE=45°,∠BOE+∠EOA=45°可得出∠EOA=∠DOB,進(jìn)而可證出△AOE∽△BOD,利用相似三角形的性質(zhì)結(jié)合拋物線的對稱軸為直線x=1可求出AE的長,過點E作EF⊥x軸,垂足為點F,則△AEF為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得出AF、EF的長,進(jìn)而可得出點E的坐標(biāo).【詳解】解:(1)將A(4,0),B(1,1)代入y=ax1+bx+1,得:16a+解得:a=∴拋物線的表達(dá)式為y=﹣14x1+12(1)∵y=﹣14x1+12x+1=﹣14(x﹣1)1∴頂點M的坐標(biāo)為(1,94當(dāng)x=0時,y=﹣14x1+12∴點C的坐標(biāo)為(0,1).過點M作MH⊥y軸,垂足為點H,如圖1所示.∴S△AMC=S梯形AOHM﹣S△AOC﹣S△CHM,=12(HM+AO)?OH﹣12AO?OC﹣12CH=12×(1+4)×94﹣12×4×1﹣12×(=32(3)連接OB,過點B作BG⊥x軸,垂足為點G,如圖1所示.∵點B的坐標(biāo)為(1,1),點A的坐標(biāo)為(4,0),∴BG=1,GA=1,∴△BGA是等腰直角三角形,∴∠BAO=45°.同理,可得:∠BOA=45°.∵點C的坐標(biāo)為(1,0),∴BC=1,OC=1,∴△OCB是等腰直角三角形,∴∠DBO=45°,BO=12,∴∠BAO=∠DBO.∵∠DOE=45°,∴∠DOB+∠BOE=45°.∵∠BOE+∠EOA=45°,∴∠EOA=∠DOB,∴△AOE∽△BOD,∴AEBD∵拋物線y=﹣14x1+12x+1的對稱軸是直線∴點D的坐標(biāo)為(1,1),∴BD=1,∴AE1∴AE=2,過點E作EF⊥x軸,垂足為點F,則△AEF為等腰直角三角形,∴EF=AF=1,∴點E的坐標(biāo)為(3,1).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、三角形(梯形)的面積、相似三角形的判定與性質(zhì)以及等腰直角三角形,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式;(1)利用分割圖形求面積法結(jié)合三角形、梯形的面積公式,求出△AMC的面積;(3)通過構(gòu)造相似三角形,利用相似三角形的性質(zhì)求出AE的長度.24、(1)y=﹣x2+2x+1;(2)該函數(shù)圖象如圖所示;見解析(1)x的取值范圍x≤﹣1或x≥1.【分析】(1)用待定系數(shù)法將A(﹣1,0),C(0,1)坐標(biāo)代入y=﹣x2+bx+c,求出b和c即可.(2)利用五點繪圖法分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度工程合同糾紛處理合同學(xué)習(xí)班3篇
- 二零二五年度房地產(chǎn)租賃合同擔(dān)保風(fēng)險控制策略3篇
- 二零二五年度影視制作公司演員雇傭合同模板3篇
- 蛋糕生產(chǎn)課程設(shè)計書
- 二零二五年度房貸轉(zhuǎn)按揭合同打印樣本2篇
- 二零二五年度合同負(fù)債科目界定與審計準(zhǔn)則合同3篇
- 海南職業(yè)技術(shù)學(xué)院《腫瘤放射治療學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度文化衍生品定制合同協(xié)議3篇
- 海南衛(wèi)生健康職業(yè)學(xué)院《計算機(jī)輔助設(shè)計三維圖形》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年醫(yī)療設(shè)備檢測與認(rèn)證服務(wù)協(xié)議3篇
- 山東省煙臺市2025屆高三上學(xué)期期末學(xué)業(yè)水平診斷政治試卷(含答案)
- 2025北京石景山初二(上)期末數(shù)學(xué)真題試卷(含答案解析)
- 商場停車場管理制度
- 北師大版四年級下冊數(shù)學(xué)課件第1課時 買文具
- 青貯產(chǎn)品銷售合同樣本
- 2024年冷庫倉儲服務(wù)協(xié)議3篇
- 中國轎貨車的車保養(yǎng)項目投資可行性研究報告
- 人工智能在體育訓(xùn)練中的應(yīng)用
- 2024-2030年中國液態(tài)金屬行業(yè)市場分析報告
- 住宅樓智能化系統(tǒng)工程施工組織設(shè)計方案
- 高二上學(xué)期數(shù)學(xué)北師大版(2019)期末模擬測試卷A卷(含解析)
評論
0/150
提交評論