未來能源研究所-探索氫在重型卡車運輸中的作用 Exploring Hydrogens Role in Heavy-Duty Trucking 2024_第1頁
未來能源研究所-探索氫在重型卡車運輸中的作用 Exploring Hydrogens Role in Heavy-Duty Trucking 2024_第2頁
未來能源研究所-探索氫在重型卡車運輸中的作用 Exploring Hydrogens Role in Heavy-Duty Trucking 2024_第3頁
未來能源研究所-探索氫在重型卡車運輸中的作用 Exploring Hydrogens Role in Heavy-Duty Trucking 2024_第4頁
未來能源研究所-探索氫在重型卡車運輸中的作用 Exploring Hydrogens Role in Heavy-Duty Trucking 2024_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ExploringHydrogen’sRoleinHeavy-DutyTrucking

KatarinaNehrkorn,BeiaSpiller,andAlanKrupnick

Report24-11July2024

AbouttheAuthors

KatarinaNehrkornisaseniorresearchanalystatResourcesfortheFuture(RFF).

ShegraduatedfromtheUniversityofMichiganin2020withaBAinEconomics.Aftergraduating,sheworkedatDeloittefortwoyearsinitsRiskandFinancialAdvisory

sector.In2023,Nehrkorncompletedhermaster’sinEnvironmentalEconomicsandClimateChangefromtheLondonSchoolofEconomicswhereherdissertationwasfocusedonenergycommunitieswithintheInflationReductionAct.

BeiaSpillerisafellowandthedirectorforRFF’sTransportationProgram.PriortojoiningRFF,shewasLeadSeniorEconomistatEnvironmentalDefenseFund,wheresheworkedforalmostadecade.SheisalsoaBoardmemberfortheAssociation

ofEnvironmentalandResourceEconomists.Spillerisanenergyeconomist,withexperienceworkingonelectricityandtransportationissues.

AlanKrupnickisaseniorfellowatRFF,directorofitsIndustryandFuelsProgram,andanexpertontheoilandgassector,reducinggreenhousegasemissionsfrom

thisandtheindustrialsectors,andcost-benefitanalysis.Inparticular,Krupnick’s

recentresearchfocusesongreenpublicprocurement,decarbonizedhydrogenandtaxcredits,anddevelopingmarketsforgreennaturalgas.HisportfolioalsoincludesguidingthevalueofinformationagendacoveredbyourVALUABLESinitiativewithNASA,thevaluationofreducingasthmarisks,estimatingthevalueofstatisticallife,andissuesofregulatoryreform.

ResourcesfortheFuturei

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-

NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive

appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable

manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/

.

ExploringHydrogen’sRoleinHeavy-DutyTruckingii

Contents

1.Introduction1

2.HowItWorks1

3.TheStatusofHydrogen-FueledHeavy-DutyVehicles2

4.Environmental,EnvironmentalJustice,Cost,andOperationalConsiderations3

4.1.Environmental3

4.2.EnvironmentalJustice4

4.3.Cost5

4.4.Operational6

5.KeyChallengestoH2Deployment7

5.1.Infrastructure7

5.2.FleetTransitionCosts7

5.3.SecondaryTruckMarket8

6.PolicyLandscape9

6.1.CaliforniaPolicies9

6.2.FederalPolicies10

7.HowCanWeOvercomeChallengestoDeployment?11

References13

ResourcesfortheFutureiii

1.Introduction

Cleanhydrogen(H2)fuelcanplayaroleindecarbonizingtheheavy-duty

transportationsector.TransportationisthebiggestsourceofanthropogenicCO2

emissionswithintheUnitedStates,andmedium-andheavy-dutyvehiclesmakeup23percentoftransportationemissions.Theheavy-dutytransportationsectorisdefinedascommercialvehicleswithgrossvehicleweightratings1morethan26,001poundsandgenerallyincludesdrayagetrucks,shortandregionaldaycabs,andlong-haulClass8trucks.2Thissectorisparticularlydifficulttodecarbonize,asthesetrucksoftenrequirelongrangesandcarryheavypayloads.ThisreportprovidesanoverviewofH2truck

technology,itscurrentstatusintheUnitedStates,comparisonstodieselandbatteryelectrictrucks,challengestodeployment,andpolicyissues.

2.HowItWorks

H2canbeusedinheavy-dutytransportationthroughtwoprimarytechnologies:

fuel

cellelectricvehicles

(FCEVs)or

H2internalcombustionengines

(H2ICEs).ThisreportfocusesonFCEVs,asthisistheprimaryusetodayandenvisionedforthefuture.In

bothcases,thefuelingprocesslookssimilartoconventionaldiesel,withH2beingdirectlyputintothetankasaliquidorgas.

However,fuelcellsoperatesimilarlytobatteries,withasmalleronboardbatteryand

fuelcell,whichproduceselectricityaslongasH2issupplied.Thefuelcellsinclude

onepositiveelectrode(cathode)andonenegativeelectrode(anode)thatsurroundanelectrolyte.TheanodereceivesH2,andthecathodereceivesair.H2isthenseparatedintoprotonsandelectrons;theelectronstravelthroughanexternalcircuit,creating

electricity.Theprotonsmigratetothecathodeandignitewithoxygenandtheelectron,emittingwaterandheatastheonlytailpipeemissions(DOE2024).

H2canbestoredaseitheraliquidoragas,withgaseousstoragerequiringextremelyhigh-pressuretanksat350–700bartoincreasedensityandliquifiedH2requiring

refrigerationto

-253°C

.H2hasthehighestenergypermassofanyfuel;however,ithasalowenergyperunitofvolume,creatingchallengesforstorageandtransportation.

LiquifyingH2increasesenergyperunitvolume,thereforeallowingmoretobe

transportedandstoredandincreasingtruckrange.Nevertheless,mostattentionis

focusedongaseousH2duetothecostandcomplexitiesofkeepingliquifiedH2atsuchlowtemperatures,aswellassafetyconcerns,asanytemperatureabove-253°Cwill

causeittoturntogasandbuildpressurewithinthetankthatcouldleadtoexplosion.

1Grossvehicleweightratingisthemaximumoperatingweightincludingvehicle,passenger,fuel,andpayload.

2Drayagetrucksareaformofshort-haulheavy-dutytruckingthattransportscontainersandfreightbetweendifferentshippingmodes.Shortandregionaldaycabsareheavy-dutytruckswithoutasleepercabin.Long-haulclass8trucksgenerallyincludetractorsandtractor-trailerswithasleepercabinforlong-haulroutes.

ExploringHydrogen’sRoleinHeavy-DutyTrucking1

3.TheStatusofHydrogen-FueledHeavy-DutyVehicles

AlthoughH2light-dutyFCEVsarealreadyinpublicuse(particularlyinCalifornia),

heavy-dutytransportationapplicationsarejustreachingcommercialdeployment.

SeveralcompaniesareinvestinginH2fuelcelltrucks,withnotableexamplesbeing

Nikola,Hyzon,Daimler,Volvo,andHyundai.Mostofthesecompaniesareintheearly

demonstrationphases;however,Nikolajustdelivereditsfirstproductionrunin2023,

with42trucks,andexpectstodeliverupto350morein2024.Forcomparison,

266,752

newheavy-dutytrucks

weresoldintheUnitedStatesin2023;around

1,200were

batteryelectric

,andmostoftheremainingwerediesel.

H2fuelinginfrastructureisalsoinitsinfancywithintheUnitedStates.Thereare

currentlyonly

56openretailstations

,withallbutoneinCaliforniaandalmostall

servinglight-dutyvehicles.Only

sixrefuelingstations

serveheavy-ormedium-

dutyvehicles,withthreeservingtrucksandtheremainingservingbustransitfleets.However,thissituationissettoimprove,withNikolaplanningtoopen60heavy-dutyfuelingstationsoverthenextfewyears,

nineofthemrunningbythemiddleof2024

.

Fuelcelltransitbusesarecomparativelyfurtheralongthantrucks,withCalifornia

operating66suchbuses.Asof2020,theNationalRenewableEnergyLab(NREL)

consideredfuelcellbusestobeatatechnologyreadinesslevelof7–8,indicatingthattheyareundergoingfull-scalevalidationinarelevantenvironment(EudyandPost

2021).Notableexamplesexistinotherareasofthecountry,suchasOhio’sStarkAreaRegionalTransitauthority,whichoperates18H2busesandarefuelingstation.

ResourcesfortheFuture2

4.Environmental,EnvironmentalJustice,Cost,andOperational

Considerations

Thissectionexplorestheenvironmental,environmentaljustice,cost,andoperationalconsiderationsofFCEVsandcomparesthemtodieselvehicles,theincumbentchoice,andbatteryelectricvehicles(BEVs),thewidelyembracedlow-emissionalternative.3

4.1.Environmental

AssessingtheenvironmentalimpactsofH2FCEVscanbechallenging,asupstream

emissionswillhavethelargestimpactonlife-cycleemissions.Fuelcellenginesdirectlyemitonlyheatandwater;however,upstreamemissionsfromtheH2production

pathwaycansignificantlyincreaseemissions.Currently,95percentofH2intheUSis“gray,”producedfromnaturalgas,which

emits7–10kgCO2/kgH2

.“Green”H2,fromzero-carbonelectricity(suchassolar,wind,hydropower,andnuclear),makesup

lessthan1percentofUSproductionanddoesnotemitanyCO2duringproduction.

However,theenvironmentalbenefitofgreenH2willbelessenedifthecleanelectricityisnot“additional,”ascleanenergyusedforH2productioncancomeattheopportunitycostofdecarbonizingelsewhere.Althoughthe

USRegionalCleanHydrogenHubs

areaimedatincreasingtheamountofboth“blue”H2(producedfromnaturalgaswithtechnologyforcapturingCO2emissionsandstoringitpermanently)andgreenH2

producedwithintheUnitedStates,production(andthedistributionsystemtoreach

demandcenters)willtakeyearstocometofruition.BecauseFCEVsarebeingdeployednow,theywillbefueledmostlybygrayH2untilcleanH2(andrefuelinginfrastructure)iswidelyavailableatcompetitive(orsubsidized)prices.

MoststudiesfindthatH2truckswouldreducelife-cyclegreenhousegas(GHG)

emissionscomparedtodieseltrucks,butthedegreevariesbystudy,vehicletype,

andH2pathway.Onestudy(O’Connelletal.2023)conductedalife-cycleassessmentinEuropeandfoundthatgaseousH2producedusingnaturalgasonlyreducesGHG

3

Biodieseldiesel

,

renewablediesel

,and

e-fuels

areadditionalalternativesintheheavy-dutytruckingsector.Theyarenotincludedindetailinthisreport,aswehavefocused

onzero-tailpipe-emissionoptions.However,theycanprovideanattractivealternative,

astheycanfunctionasadrop-infuel,allowingexistinginternalcombustionvehicles

tocontinuetobeused.Biodieselismadefromvegetableoilsandanimalfatsviaan

esterificationprocess.Renewabledieselissimilarbutusesahydrogenationprocess,

whichmakesitchemicallyequivalenttopetroleumdiesel.Renewabledieselisthemostsuitableasadrop-infuelandcanbeproducedinexistingpetroleumrefinerieswithsmallchanges.E-fuelsaremadebysynthesizingcapturedCO2andhydrogen,makingthem

CO2-neutral,asanyCO2fromcombustionwasalreadyreleasedpreviously.TheseoptionswouldallleadtorelativereductionsinCO2emissionscomparedtodiesel,buttheywouldstillproduceCO2tailpipeemissionsandcriteriaairpollutants.

ExploringHydrogen’sRoleinHeavy-DutyTrucking3

emissionsby15percentcomparedtoconventionaldiesel.Whenaddingtheenergy

toliquifytheH2,emissionsaregreaterthanthoseofdiesel.However,theyfoundthatgreenH2coulddecreaseemissionsbyasmuchas84percentfortractor-trailers,

fallingshortof100percentbecausethestudyincludedvehicleproductionemissionsaswell.Anotherlife-cyclecomparisonstudybyLeeetal.(2018)foundsimilarresults,withFCEVsusinggaseousH2fromnaturalgasreducingGHGemissionsby20–45

percent,dependingonvehicleweightandtype.However,thisstudyfoundthatwiththecurrentelectricitygenerationmix,FCEVscreatemoreSOxemissionsthandiesel.ThesecomparisonsalsoplayintothedebateaboutH2taxcrediteligibility(seelaterinthispaper).

TheenvironmentaleffectsofBEVswillalsodependonupstreamproduction

pathways—theelectricitygrid.LikeFCEVs,BEVscomeattheopportunitycostof

usingrenewableelectricityelsewhere;however,theyaretwiceasefficientasFCEVsatconvertingrenewableelectricitytoamobilityservice(Ligenetal.2018).O’Connelletal.(2023)andLeeetal.(2018)foundthatBEVsleadtogreateremissionsreductionscomparedtoFCEVs.

Finally,H2production,fuelcell,andbatterycomponentsrequiremorecriticalmineralscomparedtodieselengines,increasingdemandforlithium,nickel,copper,platinum,

iridiumandotherminerals.Electrolysersrequireincreasednickelandzirconium,andfuelcellsrequirecopperandplatinum-groupmetals(IEA2021).Thelatter,whicharealreadyusedforinternalcombustionvehicles,areofparticularconcerngiventhelowannualproduction.However,DOEhassettargetsforplatinumrequirementsperkW

forFCEVs,andtheIEAfoundthatinaSustainableDevelopmentScenario,internal

combustionenginedemandforplatinum-groupmetalsstilldominatesfuelcellsin

2040(IEA2021).BEVsrequireacomparativelylargerbatterythanFCEVs(

8–16times

larger

),increasingthedemandforcriticalminerals.Continuedinnovationwillbe

necessarytokeepcriticalmineralrequirementsaslowaspossible.Ifthesesubstancesareimported,theymayaddtoenergysecurityconcerns;ifmadedomestically,their

productionandrefinementcanleadtosignificantenvironmentalpollution.

4.2.EnvironmentalJustice

EnvironmentaljusticecommunitiesexpresssignificantconcernsaroundH2production,especiallyregardingblueH2.SomeperceiveH2asastrategyforthefossilfuelindustrytocontinueproduction,fearingthatonceH2infrastructureisestablished,there

willbeaneconomicincentiveforproducerstostillusefossilfuelstomakeblueH2.

TheCO2captureandstoragetechnologiesneededforblueH2engenderadditional

skepticism,astheydonotautomaticallycapturecriteriaairpollutantsandnecessitatespipelineconstruction,posingleakageandexplosionriskstolocalenvironmentsand

communities.

JuanJhongChung

fromtheMichiganEnvironmentalJusticeCoalitioncharacterizestheseconcerns:“Carboncapturetechnologyandhydrogenwillincreaselocalairpollution,taintcleandrinkingwater,threatenthesafetyofcommunities

inthepathofnewpipelines,andraiseenergybillsforfamiliesnationwide.”Some

groupsadvocateforonlygreenH2,althoughwateruseandnon-additionalityofcleanelectricityusedforelectrolysisarestillofconcern.

ResourcesfortheFuture4

Thefederalgovernment’semphasisondirectinggrantsforblueH2productiontofundprojectsinenvironmentaljusticecommunitiesthatyieldcommunitybenefitssetsupapotentialtrade-offbetweeneconomicdevelopmentandpotentiallyincreasingnegativeexternalities.Someenvironmentaljusticeanddisadvantagedcommunitiesperceive

thisemphasisasperpetuatingenvironmentalinjusticesandunfairlyburdeningcommunitieswiththesafetyandairpollutionconcernsassociatedwithblueH2production,pipelines,anduse.

However,somepositivesupportexistsforH2useinheavy-dutytrucking.Many

communitygroupsfeelthatelectrificationshouldbethepriorityfortransportation

decarbonizationbutrecognizethatBEVsmaynotbesuitableforlong-haultrucks,

with

EarthJustice

stating,“Hydrogenisrarelyasolutionforvehiclepollution,exceptpossiblyinextremelynichetransportationsectorswecannototherwiseeasily

electrify.”Giventhatdieseltailpipeemissionsdisproportionatelyaffectenvironmental

justicecommunities,particularlyforlast-miledeliverycenters,H2presentsan

opportunitytomitigatethisissue.Nonetheless,organizationscautionthatH2adoptionshouldberestrictedtocaseswherenootherdecarbonizationsolutionisfeasible.

4.3.Cost

Totalcostofownership(TCO)isacommonmetrictocomparefleetcostsacrossfueltypes.TCOaccountsfortheoverallcostofthevehiclethroughoutitslifecycle,makingcapitalcosts,fuelcosts,andmaintenancecostsparticularlyimportant.SeveralstudieshaveattemptedtocomparetheTCOofFCEVswithalternatives.AllstudiesagreethatFCEVshaveamuchhigherTCOthandiesel,butstudiesdisagreeonwhetherparity

willeverbereachedandwhetherFCEVsorBEVsfacehigherTCOs.Onestudyby

NRELfoundthatforcertainscenarios,FCEVsreachcostparitywithdieselby2050

(Hunteretal.2021).However,ArgonneNationalLaboratoryconductedasimilarstudyandfoundmuchhigherTCOs,withFCEVsneverreachingcostparityforClass8

sleeperanddaycabs(Burnhametal.2021).Lednaetal.(2024)conductedastudythatincorporatedconsiderationsfromIRAtaxcredit45W4andDOEH25costprojections.

Theyfoundthatheavy-dutyFCEVscouldreachparityby2034.StudiesdisagreeontheTCOsforBEVs.Hunteretal.(2021)andLednaetal.(2024)bothestimatethatBEVs

willbemoreexpensiveforheavy-dutyapplications,withHunteretal.(2021)finding

thatBEVswillbemoreexpensivethanFCEVsin2050andreachcostparitywithdiesellater.However,Burnhametal.(2021)estimatesBEVswillbecheaperthanFCEVsevenin2025.TheseestimatesarehighlysensitivetoH2fuelcostassumptions,whichhaveuncertaintrajectories.Medium-andheavy-dutyBEVshavebeguntoemergeinthe

market,whichallowsustoquantifyrealizedmarketprices.However,theresulting

priceswewillexpecttoseeintheFCEVmarketasitdevelopsarelargelystillunknownandmaynotaccuratelyreflecttheengineeringandeconomicestimatesofprojectedcostsgivenmarketconditions(suchasmarketpoweramongmanufacturers).

445Wisthe“CommercialCleanVehicleCredit,”whichprovidestaxcreditsforqualified

commercialcleanvehicles.Thistaxcreditisdiscussedinthe“PolicyLandscape”section.

5DOEhydrogencostprojectionsimplicitlyincorporateincentivessimilarto45V,ascostprojectionswillrequireadditionalincentivesandinvestments.

ExploringHydrogen’sRoleinHeavy-DutyTrucking5

4.4.Operational

Operationalconsiderations,suchasrange,refuelingtime,payload,andmaintenance,

areimportantforfleetowners,asdecarbonizedsolutionsoftencomeatacostpremiumcomparedtodiesel.GivenhownewFCEVsare,estimateswillcontinuetoevolveas

thetechnologyadvances.

Nikola

claimsarangeofupto500milesandrefuelingtimesof20minutes.

HyzonMotors

isinvestinginliquidrefuelingstationsandengines,

completingitsfirstcommercialtrialofaliquidH2FCEVinTexas,travellingmorethan540mileswithoutrefuelingandexpectingrangesof650–800milesinthefuture.Somedieseltruckscantravelmorethan1,000miles,refuelingin10–20minutes,butonlya

littlemorethan

10percentofallheavy-dutyvehiclesoperateatarangemorethan

500miles

.Differencesinmaintenancerequirementscannotbereliablyestimatedyet,althoughitisexpectedthatFCEVswillhavehighermaintenancecostscomparedtodiesel,particularlyinearlystagesofthetechnology.

CleanAirTaskForce(CATF)conductedastudycomparingtheoperationaldimensionsofFCEVandBEVsandfoundthatH2edgesoutelectricityatleastinrange,load,and

refuelingtime(Walker2023).However,CATFassumedtheH2couldbedeliveredto

refuelingstations.CATFalsoassumed20-minuterefuelingforFCEVscomparedto

330-minutechargingforBEVs,buttheseassumptionsarerapidlybecomingoutofdate,withadvancementsinBEVbatteriesandchargers.Volvo’sClass8electrictruckclaimsarangeof275milesand90-minutecharging.TheClass8TeslaSemireportsranges

closerto500mileswithchargingupto70percentin30minutes.AlthoughBEVsaremakingnotableprogress,FCEVsarestillexpectedtohavebetterrangeandfaster

refuelingatacomparativelyearlierstageofthetechnology.BEVsarealsoexpectedtofacemoreperformancedegradationinextremelycoldconditionsandlosepayload,asthebatteryisbiggerthaninanFCEV.DecreasedpayloadcapacitycanincreaseTCObymorethan10percentforlargebatteries(Burnhametal.2021).FCEVsdonotrequirelargepayloadreductions,makingthemoperationallycompetitivewithdiesel.

Atthistime,BEVsappeartobebetterequippedforregionalandlocaluse,with

environmentalandenvironmentaljusticeadvantages.However,givensomeoperationaldisadvantagesofBEVs,FCEVsmaybebettersuitedfornichelong-haulapplications.Foramorein-depthlookatBEVmedium-andheavy-dutytrucks,see

Spilleretal.

(2023)

.

ResourcesfortheFuture6

5.KeyChallengestoH2Deployment

5.1.Infrastructure

Oneofthebiggesthindrancestowide-scaledeploymentofH2fuelcellsislackof

refuelinginfrastructureandlimitedincentivesforprivateinvestmentinit.H2refuelingstationsfacea“chickenandegg”problem,withtheprivatesectorlackingincentives

toinvestininfrastructureuntilthetechnologyismorewidelydeployedandwide-

scaledeploymentdifficultwithoutthatinfrastructure.Althoughthegovernmenthas

releasedastrategy

foranationalnetworkofzero-emissionrefuelingstations,buildoutstillhasalongwaytogo,withonlysixheavy-dutystationsavailable.6ICCTfoundthat250,000long-haulH2truckswouldrequire22,000refuelingstations(Ragonetal.

2023).Comparatively,

140,000USdieselrefuelingstations

alreadyexisttoservetheapproximately

sevenmillionmediumandheavy-dutytrucks

ontheroad.

BEVswillalsorequireasignificantinvestmentinchargingstationstosupporttruck

electrification.Despiteadensepreexistingelectricitygridnationwide,substantial

upgradeswilllikelyberequiredbeforebeingabletoaccommodateheavy-duty

charging.Furthermore,onlyahandfulofpublicchargingstationsforheavy-duty

trucksexist.However,thelandscapeischanging.Forinstance,BP

recentlyacquired

TravelCentersofAmerica

,whichhas280travelcentersforheavy-dutytrucksalongmajorhighways,addingtothemorethan8,000off-highwaylocationsthatitalready

owns.BPplanstobuildheavy-dutyfastchargersfortrucks(investing$1billion

inchargingstationsby2030)andcouldaddH2refuelinginfrastructurewiththe

appropriateincentives.Asnoted,NikolaalsoplanstobuildH2refuelingstationstohelpreducerangeanxietyforbuyersofitsH2-fueledtrucks.

5.2.FleetTransitionCosts

TransitioningdieselfleetstoFCEVswillalsocomewithsignificanttransitioncosts,includingtheupfrontvehiclepurchasecostsandrefuelingcosts.

FCEVsaremuchmoreexpensivethandieselequivalentsacrossmanufacturers.In

2018,theaverageClass8dieseltruckcost

$117,430

.Nikolaexecutivesreportedan

averageFCEVsellingpriceof$351,000.However,theiraverageproductioncostsare(atthesesmallvolumes)

$679,000

,resultinginahugelosspertruck.AlthoughtheH2truckcostswillalmostcertainlyfallassupplychainissuesarealleviatedandvolumespickup,thatstillpresentsalargebarrierforbothproducersandconsumers,anditisunclearatwhatpointtheywillachievecostparity.

6Optimalimplementationofthisstrategywillalsorequiresignificantcoordinationbetweendifferentlevelsofgovernmentandacrossstates.

ExploringHydrogen’sRoleinHeavy-DutyTrucking7

EveninplaceswhereH2infrastructureexists,fuelisstillprohibitivelyexpensive,withCaliforniatruckersfacingprices

upto$36/kg

,muchofthiscausedbyanunderutilizedcapacity.TheTCO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論