版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ExploringHydrogen’sRoleinHeavy-DutyTrucking
KatarinaNehrkorn,BeiaSpiller,andAlanKrupnick
Report24-11July2024
AbouttheAuthors
KatarinaNehrkornisaseniorresearchanalystatResourcesfortheFuture(RFF).
ShegraduatedfromtheUniversityofMichiganin2020withaBAinEconomics.Aftergraduating,sheworkedatDeloittefortwoyearsinitsRiskandFinancialAdvisory
sector.In2023,Nehrkorncompletedhermaster’sinEnvironmentalEconomicsandClimateChangefromtheLondonSchoolofEconomicswhereherdissertationwasfocusedonenergycommunitieswithintheInflationReductionAct.
BeiaSpillerisafellowandthedirectorforRFF’sTransportationProgram.PriortojoiningRFF,shewasLeadSeniorEconomistatEnvironmentalDefenseFund,wheresheworkedforalmostadecade.SheisalsoaBoardmemberfortheAssociation
ofEnvironmentalandResourceEconomists.Spillerisanenergyeconomist,withexperienceworkingonelectricityandtransportationissues.
AlanKrupnickisaseniorfellowatRFF,directorofitsIndustryandFuelsProgram,andanexpertontheoilandgassector,reducinggreenhousegasemissionsfrom
thisandtheindustrialsectors,andcost-benefitanalysis.Inparticular,Krupnick’s
recentresearchfocusesongreenpublicprocurement,decarbonizedhydrogenandtaxcredits,anddevelopingmarketsforgreennaturalgas.HisportfolioalsoincludesguidingthevalueofinformationagendacoveredbyourVALUABLESinitiativewithNASA,thevaluationofreducingasthmarisks,estimatingthevalueofstatisticallife,andissuesofregulatoryreform.
ResourcesfortheFuturei
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin
Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis
committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-
NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive
appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable
manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/
.
ExploringHydrogen’sRoleinHeavy-DutyTruckingii
Contents
1.Introduction1
2.HowItWorks1
3.TheStatusofHydrogen-FueledHeavy-DutyVehicles2
4.Environmental,EnvironmentalJustice,Cost,andOperationalConsiderations3
4.1.Environmental3
4.2.EnvironmentalJustice4
4.3.Cost5
4.4.Operational6
5.KeyChallengestoH2Deployment7
5.1.Infrastructure7
5.2.FleetTransitionCosts7
5.3.SecondaryTruckMarket8
6.PolicyLandscape9
6.1.CaliforniaPolicies9
6.2.FederalPolicies10
7.HowCanWeOvercomeChallengestoDeployment?11
References13
ResourcesfortheFutureiii
1.Introduction
Cleanhydrogen(H2)fuelcanplayaroleindecarbonizingtheheavy-duty
transportationsector.TransportationisthebiggestsourceofanthropogenicCO2
emissionswithintheUnitedStates,andmedium-andheavy-dutyvehiclesmakeup23percentoftransportationemissions.Theheavy-dutytransportationsectorisdefinedascommercialvehicleswithgrossvehicleweightratings1morethan26,001poundsandgenerallyincludesdrayagetrucks,shortandregionaldaycabs,andlong-haulClass8trucks.2Thissectorisparticularlydifficulttodecarbonize,asthesetrucksoftenrequirelongrangesandcarryheavypayloads.ThisreportprovidesanoverviewofH2truck
technology,itscurrentstatusintheUnitedStates,comparisonstodieselandbatteryelectrictrucks,challengestodeployment,andpolicyissues.
2.HowItWorks
H2canbeusedinheavy-dutytransportationthroughtwoprimarytechnologies:
fuel
cellelectricvehicles
(FCEVs)or
H2internalcombustionengines
(H2ICEs).ThisreportfocusesonFCEVs,asthisistheprimaryusetodayandenvisionedforthefuture.In
bothcases,thefuelingprocesslookssimilartoconventionaldiesel,withH2beingdirectlyputintothetankasaliquidorgas.
However,fuelcellsoperatesimilarlytobatteries,withasmalleronboardbatteryand
fuelcell,whichproduceselectricityaslongasH2issupplied.Thefuelcellsinclude
onepositiveelectrode(cathode)andonenegativeelectrode(anode)thatsurroundanelectrolyte.TheanodereceivesH2,andthecathodereceivesair.H2isthenseparatedintoprotonsandelectrons;theelectronstravelthroughanexternalcircuit,creating
electricity.Theprotonsmigratetothecathodeandignitewithoxygenandtheelectron,emittingwaterandheatastheonlytailpipeemissions(DOE2024).
H2canbestoredaseitheraliquidoragas,withgaseousstoragerequiringextremelyhigh-pressuretanksat350–700bartoincreasedensityandliquifiedH2requiring
refrigerationto
-253°C
.H2hasthehighestenergypermassofanyfuel;however,ithasalowenergyperunitofvolume,creatingchallengesforstorageandtransportation.
LiquifyingH2increasesenergyperunitvolume,thereforeallowingmoretobe
transportedandstoredandincreasingtruckrange.Nevertheless,mostattentionis
focusedongaseousH2duetothecostandcomplexitiesofkeepingliquifiedH2atsuchlowtemperatures,aswellassafetyconcerns,asanytemperatureabove-253°Cwill
causeittoturntogasandbuildpressurewithinthetankthatcouldleadtoexplosion.
1Grossvehicleweightratingisthemaximumoperatingweightincludingvehicle,passenger,fuel,andpayload.
2Drayagetrucksareaformofshort-haulheavy-dutytruckingthattransportscontainersandfreightbetweendifferentshippingmodes.Shortandregionaldaycabsareheavy-dutytruckswithoutasleepercabin.Long-haulclass8trucksgenerallyincludetractorsandtractor-trailerswithasleepercabinforlong-haulroutes.
ExploringHydrogen’sRoleinHeavy-DutyTrucking1
3.TheStatusofHydrogen-FueledHeavy-DutyVehicles
AlthoughH2light-dutyFCEVsarealreadyinpublicuse(particularlyinCalifornia),
heavy-dutytransportationapplicationsarejustreachingcommercialdeployment.
SeveralcompaniesareinvestinginH2fuelcelltrucks,withnotableexamplesbeing
Nikola,Hyzon,Daimler,Volvo,andHyundai.Mostofthesecompaniesareintheearly
demonstrationphases;however,Nikolajustdelivereditsfirstproductionrunin2023,
with42trucks,andexpectstodeliverupto350morein2024.Forcomparison,
266,752
newheavy-dutytrucks
weresoldintheUnitedStatesin2023;around
1,200were
batteryelectric
,andmostoftheremainingwerediesel.
H2fuelinginfrastructureisalsoinitsinfancywithintheUnitedStates.Thereare
currentlyonly
56openretailstations
,withallbutoneinCaliforniaandalmostall
servinglight-dutyvehicles.Only
sixrefuelingstations
serveheavy-ormedium-
dutyvehicles,withthreeservingtrucksandtheremainingservingbustransitfleets.However,thissituationissettoimprove,withNikolaplanningtoopen60heavy-dutyfuelingstationsoverthenextfewyears,
nineofthemrunningbythemiddleof2024
.
Fuelcelltransitbusesarecomparativelyfurtheralongthantrucks,withCalifornia
operating66suchbuses.Asof2020,theNationalRenewableEnergyLab(NREL)
consideredfuelcellbusestobeatatechnologyreadinesslevelof7–8,indicatingthattheyareundergoingfull-scalevalidationinarelevantenvironment(EudyandPost
2021).Notableexamplesexistinotherareasofthecountry,suchasOhio’sStarkAreaRegionalTransitauthority,whichoperates18H2busesandarefuelingstation.
ResourcesfortheFuture2
4.Environmental,EnvironmentalJustice,Cost,andOperational
Considerations
Thissectionexplorestheenvironmental,environmentaljustice,cost,andoperationalconsiderationsofFCEVsandcomparesthemtodieselvehicles,theincumbentchoice,andbatteryelectricvehicles(BEVs),thewidelyembracedlow-emissionalternative.3
4.1.Environmental
AssessingtheenvironmentalimpactsofH2FCEVscanbechallenging,asupstream
emissionswillhavethelargestimpactonlife-cycleemissions.Fuelcellenginesdirectlyemitonlyheatandwater;however,upstreamemissionsfromtheH2production
pathwaycansignificantlyincreaseemissions.Currently,95percentofH2intheUSis“gray,”producedfromnaturalgas,which
emits7–10kgCO2/kgH2
.“Green”H2,fromzero-carbonelectricity(suchassolar,wind,hydropower,andnuclear),makesup
lessthan1percentofUSproductionanddoesnotemitanyCO2duringproduction.
However,theenvironmentalbenefitofgreenH2willbelessenedifthecleanelectricityisnot“additional,”ascleanenergyusedforH2productioncancomeattheopportunitycostofdecarbonizingelsewhere.Althoughthe
USRegionalCleanHydrogenHubs
areaimedatincreasingtheamountofboth“blue”H2(producedfromnaturalgaswithtechnologyforcapturingCO2emissionsandstoringitpermanently)andgreenH2
producedwithintheUnitedStates,production(andthedistributionsystemtoreach
demandcenters)willtakeyearstocometofruition.BecauseFCEVsarebeingdeployednow,theywillbefueledmostlybygrayH2untilcleanH2(andrefuelinginfrastructure)iswidelyavailableatcompetitive(orsubsidized)prices.
MoststudiesfindthatH2truckswouldreducelife-cyclegreenhousegas(GHG)
emissionscomparedtodieseltrucks,butthedegreevariesbystudy,vehicletype,
andH2pathway.Onestudy(O’Connelletal.2023)conductedalife-cycleassessmentinEuropeandfoundthatgaseousH2producedusingnaturalgasonlyreducesGHG
3
Biodieseldiesel
,
renewablediesel
,and
e-fuels
areadditionalalternativesintheheavy-dutytruckingsector.Theyarenotincludedindetailinthisreport,aswehavefocused
onzero-tailpipe-emissionoptions.However,theycanprovideanattractivealternative,
astheycanfunctionasadrop-infuel,allowingexistinginternalcombustionvehicles
tocontinuetobeused.Biodieselismadefromvegetableoilsandanimalfatsviaan
esterificationprocess.Renewabledieselissimilarbutusesahydrogenationprocess,
whichmakesitchemicallyequivalenttopetroleumdiesel.Renewabledieselisthemostsuitableasadrop-infuelandcanbeproducedinexistingpetroleumrefinerieswithsmallchanges.E-fuelsaremadebysynthesizingcapturedCO2andhydrogen,makingthem
CO2-neutral,asanyCO2fromcombustionwasalreadyreleasedpreviously.TheseoptionswouldallleadtorelativereductionsinCO2emissionscomparedtodiesel,buttheywouldstillproduceCO2tailpipeemissionsandcriteriaairpollutants.
ExploringHydrogen’sRoleinHeavy-DutyTrucking3
emissionsby15percentcomparedtoconventionaldiesel.Whenaddingtheenergy
toliquifytheH2,emissionsaregreaterthanthoseofdiesel.However,theyfoundthatgreenH2coulddecreaseemissionsbyasmuchas84percentfortractor-trailers,
fallingshortof100percentbecausethestudyincludedvehicleproductionemissionsaswell.Anotherlife-cyclecomparisonstudybyLeeetal.(2018)foundsimilarresults,withFCEVsusinggaseousH2fromnaturalgasreducingGHGemissionsby20–45
percent,dependingonvehicleweightandtype.However,thisstudyfoundthatwiththecurrentelectricitygenerationmix,FCEVscreatemoreSOxemissionsthandiesel.ThesecomparisonsalsoplayintothedebateaboutH2taxcrediteligibility(seelaterinthispaper).
TheenvironmentaleffectsofBEVswillalsodependonupstreamproduction
pathways—theelectricitygrid.LikeFCEVs,BEVscomeattheopportunitycostof
usingrenewableelectricityelsewhere;however,theyaretwiceasefficientasFCEVsatconvertingrenewableelectricitytoamobilityservice(Ligenetal.2018).O’Connelletal.(2023)andLeeetal.(2018)foundthatBEVsleadtogreateremissionsreductionscomparedtoFCEVs.
Finally,H2production,fuelcell,andbatterycomponentsrequiremorecriticalmineralscomparedtodieselengines,increasingdemandforlithium,nickel,copper,platinum,
iridiumandotherminerals.Electrolysersrequireincreasednickelandzirconium,andfuelcellsrequirecopperandplatinum-groupmetals(IEA2021).Thelatter,whicharealreadyusedforinternalcombustionvehicles,areofparticularconcerngiventhelowannualproduction.However,DOEhassettargetsforplatinumrequirementsperkW
forFCEVs,andtheIEAfoundthatinaSustainableDevelopmentScenario,internal
combustionenginedemandforplatinum-groupmetalsstilldominatesfuelcellsin
2040(IEA2021).BEVsrequireacomparativelylargerbatterythanFCEVs(
8–16times
larger
),increasingthedemandforcriticalminerals.Continuedinnovationwillbe
necessarytokeepcriticalmineralrequirementsaslowaspossible.Ifthesesubstancesareimported,theymayaddtoenergysecurityconcerns;ifmadedomestically,their
productionandrefinementcanleadtosignificantenvironmentalpollution.
4.2.EnvironmentalJustice
EnvironmentaljusticecommunitiesexpresssignificantconcernsaroundH2production,especiallyregardingblueH2.SomeperceiveH2asastrategyforthefossilfuelindustrytocontinueproduction,fearingthatonceH2infrastructureisestablished,there
willbeaneconomicincentiveforproducerstostillusefossilfuelstomakeblueH2.
TheCO2captureandstoragetechnologiesneededforblueH2engenderadditional
skepticism,astheydonotautomaticallycapturecriteriaairpollutantsandnecessitatespipelineconstruction,posingleakageandexplosionriskstolocalenvironmentsand
communities.
JuanJhongChung
fromtheMichiganEnvironmentalJusticeCoalitioncharacterizestheseconcerns:“Carboncapturetechnologyandhydrogenwillincreaselocalairpollution,taintcleandrinkingwater,threatenthesafetyofcommunities
inthepathofnewpipelines,andraiseenergybillsforfamiliesnationwide.”Some
groupsadvocateforonlygreenH2,althoughwateruseandnon-additionalityofcleanelectricityusedforelectrolysisarestillofconcern.
ResourcesfortheFuture4
Thefederalgovernment’semphasisondirectinggrantsforblueH2productiontofundprojectsinenvironmentaljusticecommunitiesthatyieldcommunitybenefitssetsupapotentialtrade-offbetweeneconomicdevelopmentandpotentiallyincreasingnegativeexternalities.Someenvironmentaljusticeanddisadvantagedcommunitiesperceive
thisemphasisasperpetuatingenvironmentalinjusticesandunfairlyburdeningcommunitieswiththesafetyandairpollutionconcernsassociatedwithblueH2production,pipelines,anduse.
However,somepositivesupportexistsforH2useinheavy-dutytrucking.Many
communitygroupsfeelthatelectrificationshouldbethepriorityfortransportation
decarbonizationbutrecognizethatBEVsmaynotbesuitableforlong-haultrucks,
with
EarthJustice
stating,“Hydrogenisrarelyasolutionforvehiclepollution,exceptpossiblyinextremelynichetransportationsectorswecannototherwiseeasily
electrify.”Giventhatdieseltailpipeemissionsdisproportionatelyaffectenvironmental
justicecommunities,particularlyforlast-miledeliverycenters,H2presentsan
opportunitytomitigatethisissue.Nonetheless,organizationscautionthatH2adoptionshouldberestrictedtocaseswherenootherdecarbonizationsolutionisfeasible.
4.3.Cost
Totalcostofownership(TCO)isacommonmetrictocomparefleetcostsacrossfueltypes.TCOaccountsfortheoverallcostofthevehiclethroughoutitslifecycle,makingcapitalcosts,fuelcosts,andmaintenancecostsparticularlyimportant.SeveralstudieshaveattemptedtocomparetheTCOofFCEVswithalternatives.AllstudiesagreethatFCEVshaveamuchhigherTCOthandiesel,butstudiesdisagreeonwhetherparity
willeverbereachedandwhetherFCEVsorBEVsfacehigherTCOs.Onestudyby
NRELfoundthatforcertainscenarios,FCEVsreachcostparitywithdieselby2050
(Hunteretal.2021).However,ArgonneNationalLaboratoryconductedasimilarstudyandfoundmuchhigherTCOs,withFCEVsneverreachingcostparityforClass8
sleeperanddaycabs(Burnhametal.2021).Lednaetal.(2024)conductedastudythatincorporatedconsiderationsfromIRAtaxcredit45W4andDOEH25costprojections.
Theyfoundthatheavy-dutyFCEVscouldreachparityby2034.StudiesdisagreeontheTCOsforBEVs.Hunteretal.(2021)andLednaetal.(2024)bothestimatethatBEVs
willbemoreexpensiveforheavy-dutyapplications,withHunteretal.(2021)finding
thatBEVswillbemoreexpensivethanFCEVsin2050andreachcostparitywithdiesellater.However,Burnhametal.(2021)estimatesBEVswillbecheaperthanFCEVsevenin2025.TheseestimatesarehighlysensitivetoH2fuelcostassumptions,whichhaveuncertaintrajectories.Medium-andheavy-dutyBEVshavebeguntoemergeinthe
market,whichallowsustoquantifyrealizedmarketprices.However,theresulting
priceswewillexpecttoseeintheFCEVmarketasitdevelopsarelargelystillunknownandmaynotaccuratelyreflecttheengineeringandeconomicestimatesofprojectedcostsgivenmarketconditions(suchasmarketpoweramongmanufacturers).
445Wisthe“CommercialCleanVehicleCredit,”whichprovidestaxcreditsforqualified
commercialcleanvehicles.Thistaxcreditisdiscussedinthe“PolicyLandscape”section.
5DOEhydrogencostprojectionsimplicitlyincorporateincentivessimilarto45V,ascostprojectionswillrequireadditionalincentivesandinvestments.
ExploringHydrogen’sRoleinHeavy-DutyTrucking5
4.4.Operational
Operationalconsiderations,suchasrange,refuelingtime,payload,andmaintenance,
areimportantforfleetowners,asdecarbonizedsolutionsoftencomeatacostpremiumcomparedtodiesel.GivenhownewFCEVsare,estimateswillcontinuetoevolveas
thetechnologyadvances.
Nikola
claimsarangeofupto500milesandrefuelingtimesof20minutes.
HyzonMotors
isinvestinginliquidrefuelingstationsandengines,
completingitsfirstcommercialtrialofaliquidH2FCEVinTexas,travellingmorethan540mileswithoutrefuelingandexpectingrangesof650–800milesinthefuture.Somedieseltruckscantravelmorethan1,000miles,refuelingin10–20minutes,butonlya
littlemorethan
10percentofallheavy-dutyvehiclesoperateatarangemorethan
500miles
.Differencesinmaintenancerequirementscannotbereliablyestimatedyet,althoughitisexpectedthatFCEVswillhavehighermaintenancecostscomparedtodiesel,particularlyinearlystagesofthetechnology.
CleanAirTaskForce(CATF)conductedastudycomparingtheoperationaldimensionsofFCEVandBEVsandfoundthatH2edgesoutelectricityatleastinrange,load,and
refuelingtime(Walker2023).However,CATFassumedtheH2couldbedeliveredto
refuelingstations.CATFalsoassumed20-minuterefuelingforFCEVscomparedto
330-minutechargingforBEVs,buttheseassumptionsarerapidlybecomingoutofdate,withadvancementsinBEVbatteriesandchargers.Volvo’sClass8electrictruckclaimsarangeof275milesand90-minutecharging.TheClass8TeslaSemireportsranges
closerto500mileswithchargingupto70percentin30minutes.AlthoughBEVsaremakingnotableprogress,FCEVsarestillexpectedtohavebetterrangeandfaster
refuelingatacomparativelyearlierstageofthetechnology.BEVsarealsoexpectedtofacemoreperformancedegradationinextremelycoldconditionsandlosepayload,asthebatteryisbiggerthaninanFCEV.DecreasedpayloadcapacitycanincreaseTCObymorethan10percentforlargebatteries(Burnhametal.2021).FCEVsdonotrequirelargepayloadreductions,makingthemoperationallycompetitivewithdiesel.
Atthistime,BEVsappeartobebetterequippedforregionalandlocaluse,with
environmentalandenvironmentaljusticeadvantages.However,givensomeoperationaldisadvantagesofBEVs,FCEVsmaybebettersuitedfornichelong-haulapplications.Foramorein-depthlookatBEVmedium-andheavy-dutytrucks,see
Spilleretal.
(2023)
.
ResourcesfortheFuture6
5.KeyChallengestoH2Deployment
5.1.Infrastructure
Oneofthebiggesthindrancestowide-scaledeploymentofH2fuelcellsislackof
refuelinginfrastructureandlimitedincentivesforprivateinvestmentinit.H2refuelingstationsfacea“chickenandegg”problem,withtheprivatesectorlackingincentives
toinvestininfrastructureuntilthetechnologyismorewidelydeployedandwide-
scaledeploymentdifficultwithoutthatinfrastructure.Althoughthegovernmenthas
releasedastrategy
foranationalnetworkofzero-emissionrefuelingstations,buildoutstillhasalongwaytogo,withonlysixheavy-dutystationsavailable.6ICCTfoundthat250,000long-haulH2truckswouldrequire22,000refuelingstations(Ragonetal.
2023).Comparatively,
140,000USdieselrefuelingstations
alreadyexisttoservetheapproximately
sevenmillionmediumandheavy-dutytrucks
ontheroad.
BEVswillalsorequireasignificantinvestmentinchargingstationstosupporttruck
electrification.Despiteadensepreexistingelectricitygridnationwide,substantial
upgradeswilllikelyberequiredbeforebeingabletoaccommodateheavy-duty
charging.Furthermore,onlyahandfulofpublicchargingstationsforheavy-duty
trucksexist.However,thelandscapeischanging.Forinstance,BP
recentlyacquired
TravelCentersofAmerica
,whichhas280travelcentersforheavy-dutytrucksalongmajorhighways,addingtothemorethan8,000off-highwaylocationsthatitalready
owns.BPplanstobuildheavy-dutyfastchargersfortrucks(investing$1billion
inchargingstationsby2030)andcouldaddH2refuelinginfrastructurewiththe
appropriateincentives.Asnoted,NikolaalsoplanstobuildH2refuelingstationstohelpreducerangeanxietyforbuyersofitsH2-fueledtrucks.
5.2.FleetTransitionCosts
TransitioningdieselfleetstoFCEVswillalsocomewithsignificanttransitioncosts,includingtheupfrontvehiclepurchasecostsandrefuelingcosts.
FCEVsaremuchmoreexpensivethandieselequivalentsacrossmanufacturers.In
2018,theaverageClass8dieseltruckcost
$117,430
.Nikolaexecutivesreportedan
averageFCEVsellingpriceof$351,000.However,theiraverageproductioncostsare(atthesesmallvolumes)
$679,000
,resultinginahugelosspertruck.AlthoughtheH2truckcostswillalmostcertainlyfallassupplychainissuesarealleviatedandvolumespickup,thatstillpresentsalargebarrierforbothproducersandconsumers,anditisunclearatwhatpointtheywillachievecostparity.
6Optimalimplementationofthisstrategywillalsorequiresignificantcoordinationbetweendifferentlevelsofgovernmentandacrossstates.
ExploringHydrogen’sRoleinHeavy-DutyTrucking7
EveninplaceswhereH2infrastructureexists,fuelisstillprohibitivelyexpensive,withCaliforniatruckersfacingprices
upto$36/kg
,muchofthiscausedbyanunderutilizedcapacity.TheTCO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡安全防護軟件許可與風險評估合同
- 南京警察學院《探索藍色海洋》2023-2024學年第一學期期末試卷
- 南京城市職業(yè)學院《攝像技術基礎實驗》2023-2024學年第一學期期末試卷
- 南充職業(yè)技術學院《現(xiàn)代機械設計方法》2023-2024學年第一學期期末試卷
- 南充電影工業(yè)職業(yè)學院《信息技術基礎及應用》2023-2024學年第一學期期末試卷
- 南昌影視傳播職業(yè)學院《兒童產(chǎn)品資料翻譯》2023-2024學年第一學期期末試卷
- 南昌大學《供應鏈系統(tǒng)模擬實驗》2023-2024學年第一學期期末試卷
- 2025年進口車購買合同模板3篇
- 民辦合肥濱湖職業(yè)技術學院《橡膠制品設計與工藝學》2023-2024學年第一學期期末試卷
- 綿陽城市學院《材料測試方法B》2023-2024學年第一學期期末試卷
- GB/T 18476-2001流體輸送用聚烯烴管材耐裂紋擴展的測定切口管材裂紋慢速增長的試驗方法(切口試驗)
- GA 1551.5-2019石油石化系統(tǒng)治安反恐防范要求第5部分:運輸企業(yè)
- 拘留所教育課件02
- 沖壓生產(chǎn)的品質保障
- 《腎臟的結構和功能》課件
- 2023年湖南聯(lián)通校園招聘筆試題庫及答案解析
- 上海市徐匯區(qū)、金山區(qū)、松江區(qū)2023屆高一上數(shù)學期末統(tǒng)考試題含解析
- 護士事業(yè)單位工作人員年度考核登記表
- 天津市新版就業(yè)、勞動合同登記名冊
- 產(chǎn)科操作技術規(guī)范范本
- 人教版八年級上冊地理全冊單元測試卷(含期中期末試卷及答案)
評論
0/150
提交評論