安徽省蚌埠局屬2022-2023學年九年級數(shù)學第一學期期末調(diào)研試題含解析_第1頁
安徽省蚌埠局屬2022-2023學年九年級數(shù)學第一學期期末調(diào)研試題含解析_第2頁
安徽省蚌埠局屬2022-2023學年九年級數(shù)學第一學期期末調(diào)研試題含解析_第3頁
安徽省蚌埠局屬2022-2023學年九年級數(shù)學第一學期期末調(diào)研試題含解析_第4頁
安徽省蚌埠局屬2022-2023學年九年級數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一塊矩形菜地的面積是120平方米,如果它的長減少2米,菜地就變成正方形,則原菜地的長是()A.10 B.12 C.13 D.142.如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點C逆時針旋轉α角到△A1B1C的位置,A1B1恰好經(jīng)過點B,則旋轉角α的度數(shù)等()A.70° B.65° C.55° D.35°3.若點,是函數(shù)上兩點,則當時,函數(shù)值為()A.2 B.3 C.5 D.104.如圖所示,已知為的直徑,直線為圓的一條切線,在圓周上有一點,且使得,連接,則的大小為()A. B. C. D.5.池塘中放養(yǎng)了鯉魚2000條,鰱魚若干條,在幾次隨機捕撈中,共捕到鯉魚200條,鰱魚300條,估計池塘中原來放養(yǎng)了鰱魚()A.10000條 B.2000條 C.3000條 D.4000條6.已知,是圓的半徑,點,在圓上,且,若,則的度數(shù)為()A. B. C. D.7.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.a(chǎn)x2+bx+c=08.函數(shù)的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定9.如圖,在中,,AB=5,BC=4,點D為邊AC上的動點,作菱形DEFG,使點E、F在邊AB上,點G在邊BC上.若這樣的菱形能作出兩個,則AD的取值范圍是()A. B.C. D.10.如圖,若繞點按逆時針方向旋轉后能與重合,則().A. B. C. D.11.小敏在今年的校運動會跳遠比賽中跳出了滿意一跳,函數(shù)(t的單位:s,h的單位:m)可以描述他跳躍時重心高度的變化,則他起跳后到重心最高時所用的時間是()A.1.71s B.1.71s C.1.63s D.1.36s12.如圖,已知圓錐側面展開圖的扇形面積為65cm2,扇形的弧長為10cm,則圓錐母線長是()A.5cm B.10cm C.12cm D.13cm二、填空題(每題4分,共24分)13.點P、Q兩點均在反比例函數(shù)的圖象上,且P、Q兩點關于原點成中心對稱,P(2,3),則點Q的坐標是_____.14.如圖,四邊形是菱形,,對角線,相交于點,于,連接,則=_________度.15.反比例函數(shù)y=的圖象位于第二、四象限,則k的取值范圍是_______.16.如圖,在等邊△ABC中,AB=8cm,D為BC中點.將△ABD繞點A.逆時針旋轉得到△ACE,則△ADE的周長為_________cm.17.如圖,雙曲線經(jīng)過斜邊的中點,與直角邊交于點.過點作于點,連接,則的面積是__________.18.一個直角三角形的兩直角邊長分別為和,則這個直角三角形的面積是_____cm1.三、解答題(共78分)19.(8分)近期江蘇省各地均發(fā)布“霧霾”黃色預警,我市某口罩廠商生產(chǎn)一種新型口罩產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關系滿足下表.銷售單價x(元/件)…20253040…每月銷售量y(萬件)…60504020…(1)請你從所學過的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個模型中確定哪種函數(shù)能比較恰當?shù)乇硎緔與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關系式為__________;(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元?(3)如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?20.(8分)如圖,四邊形是平行四邊形,分別是的平分線,且與對角線分別相交于點.(1)求證:;(2)連結,判斷四邊形是否是平行四邊形,說明理由.21.(8分)如圖,在圓中,弦,點在圓上(與,不重合),聯(lián)結、,過點分別作,,垂足分別是點、.(1)求線段的長;(2)點到的距離為3,求圓的半徑.22.(10分)如圖,在?ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.(1)求EG:BG的值;(2)求證:AG=OG;(3)設AG=a,GH=b,HO=c,求a:b:c的值.23.(10分)如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.24.(10分)如圖,在平面直角坐標系中,∠AOB=90°,AB∥x軸,OA=2,雙曲線經(jīng)過點A.將△AOB繞點A順時針旋轉,使點O的對應點D落在x軸的負半軸上,若AB的對應線段AC恰好經(jīng)過點O.(1)求點A的坐標和雙曲線的解析式;(2)判斷點C是否在雙曲線上,并說明理由25.(12分)定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.(1)判斷下列命題是真命題,還是假命題?①正方形是自相似菱形;②有一個內(nèi)角為60°的菱形是自相似菱形.③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.①求AE,DE的長;②AC,BD交于點O,求tan∠DBC的值.26.如圖,在鈍角中,點為上的一個動點,連接,將射線繞點逆時針旋轉,交線段于點.已知∠C=30°,CA=2cm,BC=7cm,設B,P兩點間的距離為xcm,A,D兩點間的距離ycm.小牧根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小牧探究的過程,請補充完整:(1)根據(jù)圖形.可以判斷此函數(shù)自變量X的取值范圍是;(2)通過取點、畫圖、測量,得到了與的幾組值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通過測量??梢缘玫絘的值為;(3)在平而直角坐標系xOy中.描出上表中以各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當AD=3.5cm時,BP的長度約為cm.

參考答案一、選擇題(每題4分,共48分)1、B【分析】設原菜地的長為,根據(jù)正方形的性質(zhì)可得原矩形菜地的寬,再根據(jù)矩形的面積公式列出方程求解即可.【詳解】設原菜地的長為,則原矩形菜地的寬由題意得:解得:,(不合題意,舍去)故選:B【點睛】本題考查了一元二次方程的實際應用,依據(jù)題意正確建立方程是解題關鍵.2、A【解析】根據(jù)旋轉的性質(zhì)和等腰三角形的性質(zhì)即可得到結論.【詳解】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵將△ABC繞點C逆時針旋轉α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故選:A.【點睛】本題考查旋轉的性質(zhì)以及等腰三角形的性質(zhì).注意掌握旋轉前后圖形的對應關系是解此題的關鍵.3、B【分析】根據(jù)點A(x1,5),B(x2,5)是函數(shù)y=x2﹣2x+1上兩對稱點,可求得x=x1+x2=2,把x=2代入函數(shù)關系式即可求解.【詳解】∵點A(x1,5),B(x2,5)是函數(shù)y=x2﹣2x+1上兩對稱點,對稱軸為直線x=1,∴x1+x2=2×1=2,∴x=2,∴把x=2代入函數(shù)關系式得y=22﹣2×2+1=1.故選:B.【點睛】本題考查了函數(shù)圖象上的點的坐標與函數(shù)解析式的關系,以及二次函數(shù)的性質(zhì).求出x1+x2的值是解答本題的關鍵.4、C【分析】連接OB,由題意可知,△COB是等邊三角形,即可求得∠C,再由三角形內(nèi)角和求得∠BAC,最后根據(jù)切線的性質(zhì)和余角的定義解答即可.【詳解】解:如圖:連接OB∵為的直徑∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等邊三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直線為圓的一條切線∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案為C.【點睛】本題主要考查了圓的性質(zhì)、等邊三角形以及切線的性質(zhì)等知識點,根據(jù)題意說明△COB是等邊三角形是解答本題的關鍵.5、C【分析】根據(jù)題意求出鯉魚與鰱魚的比值,進而利用池塘中放養(yǎng)了鯉魚2000條除以鯉魚與鰱魚的比值即可估計池塘中原來放養(yǎng)了鰱魚的條數(shù).【詳解】解:由題意可知鯉魚與鰱魚的比值為:,所以池塘中原來放養(yǎng)了鰱魚:(條).故選:C.【點睛】本題考查的是通過樣本去估計總體,熟練掌握通過樣本去估計總體的方法,只需將樣本“成比例地放大”為總體即可.6、D【分析】連接OC,根據(jù)圓周角定理求出∠AOC,再根據(jù)平行得到∠OCB,利用圓內(nèi)等腰三角形即可求解.【詳解】連接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故選D.【點睛】此題主要考查圓周角定理,解題的關鍵是熟知圓的基本性質(zhì)及圓周角定理的內(nèi)容.7、C【解析】分析:本題根據(jù)一元二次方程的定義解答.一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.詳解:A.是二元二次方程,故本選項錯誤;B.是分式方程,不是整式方程,故本選項錯誤;C.是一元二次方程,故本選項正確;D.當a、b、c是常數(shù),a≠0時,方程才是一元二次方程,故本選項錯誤.故選C.點睛:本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.8、C【分析】根據(jù)題意先確定拋物線的對稱軸及開口方向,再根據(jù)點與對稱軸的遠近,判斷函數(shù)值的大?。驹斀狻拷猓骸?,∴對稱軸是x=-2,開口向下,距離對稱軸越近,函數(shù)值越大,∵,∴.故選:C.【點睛】本題主要考查二次函數(shù)的圖象性質(zhì)及單調(diào)性的規(guī)律,掌握開口向下,距離對稱軸越近,函數(shù)值越大是解題的關鍵.9、B【分析】因為在中只能作出一個正方形,所以要作兩個菱形則AD必須小于此時的AD,也即這是AD的最大臨界值;當AD等于菱形邊長時,這時恰好可以作兩個菱形,這是AD最小臨界值.然后分別在這2種情形下,利用相似三角形的性質(zhì)求出AD即可.【詳解】過C作交DG于M由三角形的面積公式得即,解得①當菱形DEFG為正方形時,則只能作出一個菱形設:,為菱形,,,即,得()若要作兩個菱形,則;②當時,則恰好作出兩個菱形設:,過D作于H,由①知,,,得綜上,故選:B.【點睛】本題考查了相似三角形的性質(zhì)、銳角三角函數(shù),依據(jù)圖形的特點判斷出兩個臨界值是解題關鍵.10、D【分析】根據(jù)旋轉的性質(zhì)知,,然后利用三角形內(nèi)角和定理進行求解.【詳解】∵繞點按逆時針方向旋轉后與重合,∴,,∴,故選D.【點睛】本題考查了旋轉的性質(zhì),三角形內(nèi)角和定理,熟知旋轉角的定義與旋轉后對應邊相等是解題的關鍵.11、D【分析】找重心最高點,就是要求這個二次函數(shù)的頂點,應該把一般式化成頂點式后,直接解答.【詳解】解:h=3.5t-4.9t2=-4.9(t-)2+,∵-4.9<1∴當t=≈1.36s時,h最大.故選D.【點睛】此題主要考查了二次函數(shù)的應用,根據(jù)題意得出頂點式在解題中的作用是解題關鍵.12、D【解析】∴選D二、填空題(每題4分,共24分)13、【分析】由題意根據(jù)反比例函數(shù)的圖象是中心對稱圖形以及關于原點成中心對稱的點的坐標特征進行分析即可求解.【詳解】解:∵反比例函數(shù)的圖象是中心對稱圖形,且P、Q兩點關于原點成中心對稱,∴Q(﹣2,﹣3).故答案為:(﹣2,﹣3).【點睛】本題主要考查反比例函數(shù)圖象的中心對稱性,注意掌握反比例函數(shù)的圖象是中心對稱圖形以及關于原點成中心對稱的點的坐標特征.14、25【解析】首先求出∠HDB的度數(shù),再利用直角三角形斜邊中線定理可得OH=OD,由此可得∠OHD=∠ODH即可解決問題.【詳解】∵四邊形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°?∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°?ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案為:25.【點睛】本題考查了菱形的性質(zhì),直角三角形斜邊中線定理,熟練掌握性質(zhì)定理是解題的關鍵.15、【解析】根據(jù)k<0時,反比例函數(shù)的圖象位于二、四象限,可列出不等式,解之即可得出答案.【詳解】∵反比例函數(shù)y=的圖象位于第二、四象限,∴3k?1<0,解得:.故答案為.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì).根據(jù)反比例函數(shù)的圖象所在象限列出不等式是解題的關鍵.16、12【分析】由旋轉可知,由全等的性質(zhì)及等邊三角形的性質(zhì)可知是等邊三角形,利用勾股定理求出AD長,可得△ADE的周長.【詳解】解:△ABC是等邊三角形,D為BC中點,AB=8在中,根據(jù)勾股定理得由旋轉可知是等邊三角形所以△ADE的周長為cm.故答案為:【點睛】本題主要考查了等邊三角形的判定和性質(zhì),靈活利用等邊三角形的性質(zhì)是解題的關鍵.17、1【分析】先證明△OED∽△OAB,得出相似比=,再根據(jù)反比例函數(shù)中k的幾何意義得出S△AOC=S△DOE=×2=1,從而可得出△AOB的面積,最后由S△OBC=S△AOB-S△AOC可得出結果.【詳解】解:∵∠OAB=90°,DE⊥OA,

∴DE∥AB,∴△OED∽△OAB,

∵D為OB的中點D,,∴.∵雙曲線的解析式是y=,

∴S△AOC=S△DOE=×2=1,

∴S△AOB=4S△DOE=4,

∴S△OBC=S△AOB-S△AOC=1,

故答案為:1.【點睛】主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得三角形面積為|k|,是經(jīng)??疾榈囊粋€知識點.18、【分析】本題可利用三角形面積×底×高,直接列式求解.【詳解】∵直角三角形兩直角邊可作為三角形面積公式中的底和高,∴該直角三角形面積.故填:.【點睛】本題考查三角形面積公式以及二次根式的運算,難度較低,注意計算仔細即可.三、解答題(共78分)19、(1)y=﹣2x+100;(2)當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【分析】(1)直接利用待定系數(shù)法求出一次函數(shù)解析式;(2)根據(jù)利潤=銷售量×(銷售單價﹣成本),代入代數(shù)式求出函數(shù)關系式,令利潤z=41,求出x的值;(3)根據(jù)廠商每月的制造成本不超過51萬元,以及成本價18元,得出銷售單價的取值范圍,進而得出最大利潤.【詳解】解:(1)由表格中數(shù)據(jù)可得:y與x之間的函數(shù)關系式為:y=kx+b,把(20,60),(25,50)代入得:解得:故y與x之間的函數(shù)關系式為:y=﹣2x+100;(2)設總利潤為z,由題意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;當z=41時,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:當銷售單價為28元或1元時,廠商每月獲得的利潤為41萬元;(3)∵廠商每月的制造成本不超過51萬元,每件制造成本為18元,∴每月的生產(chǎn)量為:小于等于=30萬件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴圖象開口向下,對稱軸右側z隨x的增大而減小,∴x=35時,z最大為:510萬元.當銷售單價為35元時,廠商每月獲得的利潤最大,最大利潤為510萬元.【點睛】本題考查的是二次函數(shù)在實際生活中的應用,關鍵是根據(jù)題意求出二次函數(shù)的解析式以及利用增減性求出最值.20、(1)見解析;(2)是平行四邊形;理由見解析.【分析】(1)根據(jù)角平分線的性質(zhì)先得出∠BEC=∠DFA,然后再證∠ACB=∠CAD,再證出△ABE≌△CDF,從而得出AE=CF;

(2)連接BD交AC于O,則可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依據(jù)對角線互相平分的四邊形是平行四邊形即可證明.【詳解】(1)證明:四邊形是平行四邊形,,分別是的平分線,,∴,∴(2)是平行四邊形;連接交于,四邊形是平行四邊形,,.即四邊形為平行四邊形(對角線互相平分的四邊形是平行四邊形).【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),解答本題的關鍵尋找兩條線段所在的三角形,然后證明兩三角形全等.21、(1);(2)圓的半徑為1.【分析】(1)利用中位線定理得出,從而得出DE的長.(2)過點作,垂足為點,,聯(lián)結,求解出AH的值,再利用勾股定理,求出圓的半徑.【詳解】解(1)∵經(jīng)過圓心,∴同理:∴是的中位線∴∵∴(2)過點作,垂足為點,,聯(lián)結∵經(jīng)過圓心∴∵∴在中,∴即圓的半徑為1.【點睛】本題考查了三角形的中位線定理以及勾股定理的運用,是較為典型的圓和三角形的例題.22、(1)1:3;(1)見解析;(3)5:3:1.【分析】(1)根據(jù)平行四邊形的性質(zhì)可得AO=AC,AD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質(zhì),即可求出EG:BG的值;(1)根據(jù)相似三角形的性質(zhì)可得GC=3AG,則有AC=4AG,從而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根據(jù)相似三角形的性質(zhì)可得AG=AC,AH=AC,結合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已證),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.23、(1)畫圖見解析;(2)DE=4.【解析】(1)連接CB延長CB交DE于O,點O即為所求.連接OG,延長OG交DF于H.線段FH即為所求.(2)根據(jù),可得,即可推出DO=4m.【詳解】(1)解:如圖,點O為燈泡所在的位置,線段FH為小亮在燈光下形成的影子.(2)解:由已知可得,,∴,∴OD=4m,∴燈泡的高為4m.【點睛】本題考查中心投影、解題的關鍵是正確畫出圖形,記住物長與影長的比的定值,屬于基礎題,中考常考題型.24、(1),雙曲線的解析式為;(2)點在雙曲線上,理由見解析.【分析】(1)根據(jù)旋轉的性質(zhì)和平行線的性質(zhì),得到,得到△AOD是等邊三角形,根據(jù)特殊角的三角函數(shù),求出點A的坐標,然后得到雙曲線的解析式;(2)先求出OC的長度,然后利用特殊角的三角函數(shù)求出點C的坐標,然后進行判斷即可.【詳解】解:(1)過點A作軸,垂足為.∵軸,.有旋轉的性質(zhì)可知,...為等邊三角形..,.點的坐標為.由題意知,,.雙曲線的解析式為:.(2)點在雙曲線上,理由如下:過點作軸,垂足為.由(1)知,...,.點的坐標為.將代入中,.點在雙曲線上.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,旋轉的性質(zhì),等邊三角形的判定和性質(zhì),特殊角的三角函數(shù)等,求得△AOD是等邊三角形是解題的關鍵.25、(1)見解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①證明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②連接AC,由自相似菱形的定義即可得出結論;③由自相似菱形的性質(zhì)即可得出結論;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②過E作EM⊥AD于M,過D作DN⊥BC于N,則四邊形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函數(shù)定義即可得出答案.【詳解】解:(1)①正方形是自相似菱形,是真命題;理由如下:如圖3所示:∵四邊形ABCD是正方形,點E是BC的中點,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案為:真命題;②有一個內(nèi)角為60°的菱形是自相似菱形,是假命題;理由如下:如圖4所示:連接AC,∵四邊形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等邊三角形,∠DCE=120°,∵點E是BC的中點,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB與△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,則∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一個內(nèi)角為60°的菱形不是自相似菱形,故答案為:假命題;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論