版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南京鼓樓實驗中學(xué)2025屆數(shù)學(xué)九上期末監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,中,,,點是的外心.則()A. B. C. D.2.如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是()A.6 B.12 C.24 D.不能確定3.下列計算,正確的是()A.a(chǎn)2·a3=a6 B.3a2-a2=2 C.a(chǎn)8÷a2=a4 D.(a2)3=a64.如圖,在中,,,點從點沿邊,勻速運動到點,過點作交于點,線段,,,則能夠反映與之間函數(shù)關(guān)系的圖象大致是()A. B. C. D.5.如圖,中,點、分別在、上,,,則與四邊形的面積的比為()A. B. C. D.6.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中數(shù)字表示該位置小正方體的個數(shù),則該幾何體的左視圖是()A. B. C. D.7.方程x2﹣2x﹣4=0的根的情況()A.只有一個實數(shù)根 B.有兩個不相等的實數(shù)根C.有兩個相等的實數(shù)根 D.沒有實數(shù)根8.下列事件中,是必然事件的是()A.明天一定有霧霾B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)C.13個人中至少有兩個人生肖相同D.購買一張彩票,中獎9.正十邊形的外角和為()A.180° B.360° C.720° D.1440°10.如圖,在第一象限內(nèi),,是雙曲線()上的兩點,過點作軸于點,連接交于點,則點的坐標(biāo)為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標(biāo)系中,函數(shù)與的圖象交于兩點,過作軸的垂線,交函數(shù)的圖象于點,連接,則的面積為_______.12.若x1,x2是一元二次方程2x2+x-3=0的兩個實數(shù)根,則x1+x2=____.13.如圖,在平面直角坐標(biāo)系中,等腰Rt△OA1B1的斜邊OA1=2,且OA1在x軸的正半軸上,點B1落在第一象限內(nèi).將Rt△OA1B1繞原點O逆時針旋轉(zhuǎn)45°,得到Rt△OA2B2,再將Rt△OA2B2繞原點O逆時針旋轉(zhuǎn)45°,又得到Rt△OA3B3,……,依此規(guī)律繼續(xù)旋轉(zhuǎn),得到Rt△OA2019B2019,則點B2019的坐標(biāo)為_____.14.分解因式:3a2b+6ab2=____.15.如圖,在平面直角坐標(biāo)系中,以點為圓心畫圓,與軸交于;兩點,與軸交于兩點,當(dāng)時,的取值范圍是____________.16.如圖,三個頂點的坐標(biāo)分別為,以原點O為位似中心,把這個三角形縮小為原來的,可以得到,已知點的坐標(biāo)是,則點的坐標(biāo)是______.17.歸納“T”字形,用棋子擺成的“T”字形如圖所示,按照圖①,圖②,圖③的規(guī)律擺下去,擺成第n個“T”字形需要的棋子個數(shù)為_______.18.把拋物線y=2x2先向下平移1個單位,再向左平移2個單位,得到的拋物線的解析式是_______.三、解答題(共66分)19.(10分)如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于E,連結(jié)AC、OC、BC.求證:∠ACO=∠BCD.20.(6分)(1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請用含的式子表示的面積;提示:過點作邊上的高)(2)類比探究:如圖2,在一般的中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請說明理由.(3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)21.(6分)李明準(zhǔn)備進(jìn)行如下操作實驗,把一根長40cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.(1)要使這兩個正方形的面積之和等于58cm2,李明應(yīng)該怎么剪這根鐵絲?(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48cm2,你認(rèn)為他的說法正確嗎?請說明理由.22.(8分)求值:+2sin30°-tan60°-tan45°23.(8分)交通安全是社會關(guān)注的熱點問題,安全隱患主要是超速和超載.某中學(xué)八年級數(shù)學(xué)活動小組的同學(xué)進(jìn)行了測試汽車速度的實驗.如圖,先在筆直的公路1旁選取一點P,在公路1上確定點O、B,使得PO⊥l,PO=100米,∠PBO=45°.這時,一輛轎車在公路1上由B向A勻速駛來,測得此車從B處行駛到A處所用的時間為3秒,并測得∠APO=60°.此路段限速每小時80千米,試判斷此車是否超速?請說明理由(參考數(shù)據(jù):=1.41,=1.73).24.(8分)為吸引市民組團(tuán)去風(fēng)景區(qū)旅游,觀光旅行社推出了如下收費標(biāo)準(zhǔn):某單位員工去風(fēng)景區(qū)旅游,共支付給旅行社旅游費用10500元,請問該單位這次共有多少員工去風(fēng)景區(qū)旅游?25.(10分)如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.(3)求點在函數(shù)圖象上的概率.26.(10分)如圖,中,,點是延長線上一點,平面上一點,連接平分.(1)若,求的度數(shù);(2)若,求證:
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)三角形內(nèi)角和定理求出∠A=70°,根據(jù)圓周角定理解答即可.【詳解】解:∵∠ABC=50°,∠ACB=60°
∴∠A=70°
∵點O是△ABC的外心,
∴∠BOC=2∠A=140°,
故選:C【點睛】本題考查的是三角形內(nèi)角和定理、外心的定義和圓周角定理.2、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的長,則可求得OA與OD的長,又由S△AOD=S△APO+S△DPO=OA?PE+OD?PF,代入數(shù)值即可求得結(jié)果.【詳解】連接OP,如圖所示:∵四邊形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA?PE+OD?PF=OA?(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴點P到矩形的兩條對角線AC和BD的距離之和是1.故選B.【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形面積.熟練掌握矩形的性質(zhì)和勾股定理是解題的關(guān)鍵.3、D【分析】按照整式乘法、合并同類項、整式除法、冪的乘方依次化簡即可得到答案.【詳解】A.a2·a3=a5,故該項錯誤;B.3a2-a2=2a2,故該項錯誤;C.a8÷a2=a6,故該項錯誤;D.(a2)3=a6正確,故選:D.【點睛】此題考查整式的化簡計算,熟記整式乘法、合并同類項、整式除法、冪的乘方的計算方法即可正確解答.4、D【分析】分兩種情況:①當(dāng)P點在OA上時,即2≤x≤2時;②當(dāng)P點在AB上時,即2<x≤1時,求出這兩種情況下的PC長,則y=PC?OC的函數(shù)式可用x表示出來,對照選項即可判斷.【詳解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①當(dāng)P點在OA上時,即2≤x≤2時,PC=OC=x,S△POC=y=PC?OC=x2,是開口向上的拋物線,當(dāng)x=2時,y=2;OC=x,則BC=1-x,PC=BC=1-x,S△POC=y=PC?OC=x(1-x)=-x2+2x,是開口向下的拋物線,當(dāng)x=1時,y=2.綜上所述,D答案符合運動過程中y與x的函數(shù)關(guān)系式.故選:D.【點睛】本題主要考查了動點問題的函數(shù)圖象,解決這類問題要先進(jìn)行全面分析,根據(jù)圖形變化特征或動點運動的背景變化進(jìn)行分類討論,然后動中找靜,寫出對應(yīng)的函數(shù)式.5、C【分析】因為DE∥BC,所以可得△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方解答即可.【詳解】解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵AD:DB=1:2,
∴AD:AB=1:3,
∴,
∴△ADE的面積與四邊形DBCE的面積之比=1:8,
故選:C.【點睛】本題考查了相似三角形的判定與性質(zhì),熟記相似三角形面積的比等于相似比的平方是解題的關(guān)鍵.6、A【解析】左視圖從左往右看,正方形的個數(shù)依次為:3,1.故選A.7、B【詳解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有兩個不相等的實數(shù)根.故選B.【點睛】一元二次方程根的情況:(1)b2-4ac>0,方程有兩個不相等的實數(shù)根;(2)b2-4ac=0,方程有兩個相等的實數(shù)根;(3)b2-4ac<0,方程沒有實數(shù)根.注:若方程有實數(shù)根,那么b2-4ac≥0.8、C【分析】必然事件是一定發(fā)生的事情,據(jù)此判斷即可.【詳解】A.明天有霧霾是隨機(jī)事件,不符合題意;B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)是隨機(jī)事件,不符合題意;C.總共12個生肖,13個人中至少有兩個人生肖相同是必然事件,符合題意;D.購買一張彩票,中獎是隨機(jī)事件,不符合題意;故選:C.【點睛】本題考查了必然事件與隨機(jī)事件,必然事件是一定發(fā)生的的時間,隨機(jī)事件是可能發(fā)生,也可能不發(fā)生的事件,熟記概念是解題的關(guān)鍵.9、B【分析】根據(jù)多邊的外角和定理進(jìn)行選擇.【詳解】解:因為任意多邊形的外角和都等于360°,
所以正十邊形的外角和等于360°,.
故選B.【點睛】本題考查了多邊形外角和定理,關(guān)鍵是熟記:多邊形的外角和等于360度.10、D【分析】先根據(jù)P點坐標(biāo)計算出反比例函數(shù)的解析式,進(jìn)而求出M點的坐標(biāo),再根據(jù)M點的坐標(biāo)求出OM的解析式,進(jìn)而將代入求解即得.【詳解】解:將代入得:∴∴反比例函數(shù)解析式為將代入得:∴∴設(shè)OM的解析式為:∴將代入得∴∴OM的解析式為:當(dāng)時∴點的坐標(biāo)為.故選:D.【點睛】本題考查待定系數(shù)法求解反比例函數(shù)和正比例函數(shù)解析式,解題關(guān)鍵是熟知求反比例函數(shù)和正比例函數(shù)解析式只需要一個點的坐標(biāo).二、填空題(每小題3分,共24分)11、6【分析】根據(jù)正比例函數(shù)y=kx與反比例函數(shù)的圖象交點關(guān)于原點對稱,可得出A、B兩點坐標(biāo)的關(guān)系,根據(jù)垂直于y軸的直線上任意兩點縱坐標(biāo)相同,可得出A、C兩點坐標(biāo)的關(guān)系,設(shè)A點坐標(biāo)為(x,-),表示出B、C兩點的坐標(biāo),再根據(jù)三角形的面積公式即可解答.【詳解】∵正比例函數(shù)y=kx與反比例函數(shù)的圖象交點關(guān)于原點對稱,∴設(shè)A點坐標(biāo)為(x,?),則B點坐標(biāo)為(?x,),C(?2x,?),∴S=×(?2x?x)?(??)=×(?3x)?(?)=6.故答案為6.【點睛】此題考查正比例函數(shù)的性質(zhì)與反比例函數(shù)的性質(zhì),解題關(guān)鍵在于得出A、C兩點.12、【分析】直接利用根與系數(shù)的關(guān)系求解.【詳解】解:根據(jù)題意得x1+x2═故答案為.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個為x1,x2,則x1+x2=,x1?x2=.13、(﹣1,1)【分析】觀察圖象可知,點B1旋轉(zhuǎn)8次為一個循環(huán),利用這個規(guī)律解決問題即可.【詳解】解:觀察圖象可知,點B1旋轉(zhuǎn)8次一個循環(huán),∵2018÷8=252余數(shù)為2,∴點B2019的坐標(biāo)與B3(﹣1,1)相同,∴點B2019的坐標(biāo)為(﹣1,1).故答案為(﹣1,1).【點睛】本題考查坐標(biāo)與圖形的變化?旋轉(zhuǎn),規(guī)律型問題,解題的關(guān)鍵是學(xué)會探究規(guī)律的方法,屬于中考常考題型.14、3ab(a+2b)【分析】觀察可得此題的公因式為:3ab,提取公因式即可求得答案.【詳解】解:3a2b+6ab2=3ab(a+2b)故答案為:3ab(a+2b)15、【解析】作ME⊥CD于E,MF⊥AB于F,連接MA、MC.當(dāng)CD=6和CD=時在中求出半徑MC,然后在中可求的值,于是范圍可求.【詳解】解:如圖1,當(dāng)CD=6時,作ME⊥CD于E,MF⊥AB于F,連接MA、MC,∵,∴ME=4,MF=3,∵M(jìn)E⊥CD,CD=6,∴CE=3,∴,∴MA=MC=5,∵M(jìn)F⊥AB,∴==,如圖2,當(dāng)CD=時,作ME⊥CD于E,MF⊥AB于F,連接MA、MC,∵,∴ME=4,MF=3,∵M(jìn)E⊥CD,CD=,∴CE=,∴,∴MA=MC=8,∵M(jìn)F⊥AB,∴==,綜上所述,當(dāng)時,.故答案是:.【點睛】本題考查了三角函數(shù)在坐標(biāo)系和圓中的應(yīng)用,作輔助線構(gòu)造直角三角形利用垂徑定理求出半徑是解題的關(guān)鍵.16、(1,2)【解析】解:∵點A的坐標(biāo)為(2,4),以原點O為位似中心,把這個三角形縮小為原來的,∴點A′的坐標(biāo)是(2×,4×),即(1,2).故答案為(1,2).17、3n+1.【分析】根據(jù)題意和圖形,可以發(fā)現(xiàn)圖形中棋子的變化規(guī)律,從而可以求得第n個“T”字形需要的棋子個數(shù).【詳解】解:由圖可得,
圖①中棋子的個數(shù)為:3+1=5,
圖②中棋子的個數(shù)為:5+3=8,
圖③中棋子的個數(shù)為:7+4=11,
……
則第n個“T”字形需要的棋子個數(shù)為:(1n+1)+(n+1)=3n+1,
故答案為3n+1.【點睛】本題考查圖形的變化類,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中棋子的變化規(guī)律,利用數(shù)形結(jié)合的思想解答.18、y=2(x+2)2﹣1【解析】直接根據(jù)“上加下減、左加右減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,二次函數(shù)y=2x2的圖象向下平移1個單位得到y(tǒng)=2x2?1,由“上加下減”的原則可知,將二次函數(shù)y=2x2?1的圖象向左平移2個單位可得到函數(shù)y=2(x+2)2?1,故答案是:y=2(x+2)2?1.【點睛】本題考查的是二次函數(shù)圖象與幾何變換,熟練掌握規(guī)律是解題的關(guān)鍵.三、解答題(共66分)19、證明見解析【分析】根據(jù)圓周角定理的推論即可求得.【詳解】證明:∵AB是⊙O的直徑,CD⊥AB,∴.∴∠A=∠1.又∵OA=OC,∴∠1=∠A.∴∠1=∠1.即:∠ACO=∠BCD.【點睛】本題考查了圓周角定理的推論:在同圓或等圓中同弧或等弧所對圓周角相等.20、(1);(2)成立,理由見解析;(3)【分析】(1)如圖1,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(2)如圖2,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有.DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(3)如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質(zhì)可以得出BF=BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.【詳解】解:(1)如圖1,過點D作DE⊥CB交CB的延長線于E,
∴∠BED=∠ACB=90°,
由旋轉(zhuǎn)知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD=BC?DE=
故答案為(2)(1)中結(jié)論仍然成立,理由:如圖,過點作邊上的高,在中,∵,由旋轉(zhuǎn)可知:,∴,∴,又∵,∴,∴,(3).如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,
∴∠AFB=∠E=90°,BF=BC=a.
∴∠FAB+∠ABF=90°
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD
∵線段BD是由線段AB旋轉(zhuǎn)得到的,
∴AB=BD
在△AFB和△BED中,
,
∴△AFB≌△BED(AAS),
∴BF=DE=a.
∵S△BCD=BC?DE=?a?a=.
∴△BCD的面積為.【點睛】此題是幾何變換綜合題,主要考查了直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,三角形的面積公式的運用,判斷出△ABC≌△BDE是解本題的關(guān)鍵.21、(1)李明應(yīng)該把鐵絲剪成12cm和28cm的兩段;(2)李明的說法正確,理由見解析.【解析】試題分析:(1)設(shè)剪成的較短的這段為xcm,較長的這段就為(40﹣x)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于58cm2建立方程求出其解即可;(2)設(shè)剪成的較短的這段為mcm,較長的這段就為(40﹣m)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于48cm2建立方程,如果方程有解就說明李明的說法錯誤,否則正確.試題解析:設(shè)其中一段的長度為cm,兩個正方形面積之和為cm2,則,(其中),當(dāng)時,,解這個方程,得,,∴應(yīng)將之剪成12cm和28cm的兩段;(2)兩正方形面積之和為48時,,,∵,∴該方程無實數(shù)解,也就是不可能使得兩正方形面積之和為48cm2,李明的說法正確.考點:1.一元二次方程的應(yīng)用;2.幾何圖形問題.22、【解析】先得出式子中的特殊角的三角函數(shù)值,再按實數(shù)溶合運算順序進(jìn)行計算即可.解:原式=23、此車超速,理由見解析.【分析】解直角三角形得到AB=OA-OB=73米,求得此車的速度≈86千米/小時>80千米/小時,于是得到結(jié)論.【詳解】解:此車超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小時>80千米/小時,∴此車超速.【點睛】本題考查解直角三角形的應(yīng)用問題.此題難度適中,解題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題求解,注意數(shù)形結(jié)合思想的應(yīng)用.24、該單位這次共有30名員工去風(fēng)景區(qū)旅游【分析】設(shè)該單位這次共有x名員工去風(fēng)景區(qū)旅游,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗生素使用后腸道微生態(tài)恢復(fù)方法
- 小學(xué)一年級數(shù)學(xué)同步練習(xí)題
- 高一化學(xué)第四單元非金屬及其化合物第二講富集在海水中的元素-氯練習(xí)題
- 2024高中地理第一章人口的變化第1節(jié)人口的數(shù)量變化練習(xí)含解析新人教版必修2
- 2024高中語文第四單元創(chuàng)造形象詩文有別過小孤山大孤山訓(xùn)練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學(xué)一輪復(fù)習(xí)第10章有機(jī)化學(xué)基礎(chǔ)第35講生活中常見的有機(jī)化合物精練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)第三章第3課時金屬材料復(fù)合材料教案魯科版
- 2024高考化學(xué)二輪復(fù)習(xí)專題一傳統(tǒng)文化物質(zhì)的組成與分類學(xué)案
- 2024高考地理一輪復(fù)習(xí)專練20三大類巖石及地殼的物質(zhì)循環(huán)含解析新人教版
- 期末學(xué)校教育教學(xué)年會閉幕上校長講話:凝心聚力奔赴2025光明新程
- 化學(xué)-山東省濰坊市、臨沂市2024-2025學(xué)年度2025屆高三上學(xué)期期末質(zhì)量檢測試題和答案
- 領(lǐng)導(dǎo)學(xué) 課件全套 孫健 第1-9章 領(lǐng)導(dǎo)要素- 領(lǐng)導(dǎo)力開發(fā)
- 2025新譯林版英語七年級下單詞默寫表
- 2024年私募基金爭議解決研究報告之一:私募基金管理人謹(jǐn)慎勤勉義務(wù)之邊界探析-國楓研究院
- 物業(yè)客服服務(wù)技巧培訓(xùn)
- 環(huán)衛(wèi)設(shè)施設(shè)備更新實施方案
- 招聘技巧的培訓(xùn)
- 北師大版一年級上冊數(shù)學(xué)全冊教案(教學(xué)設(shè)計)及教學(xué)反思
- 節(jié)假日臨時活動保安服務(wù)方案
- 提高病案質(zhì)量完善病案管理病案部年終工作總結(jié)
- 幼兒園大班語言活動《新年禮物》課件
評論
0/150
提交評論