![遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁](http://file4.renrendoc.com/view2/M01/35/19/wKhkFmaY0ayAMm0iAAHQTTuCDAU042.jpg)
![遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁](http://file4.renrendoc.com/view2/M01/35/19/wKhkFmaY0ayAMm0iAAHQTTuCDAU0422.jpg)
![遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁](http://file4.renrendoc.com/view2/M01/35/19/wKhkFmaY0ayAMm0iAAHQTTuCDAU0423.jpg)
![遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁](http://file4.renrendoc.com/view2/M01/35/19/wKhkFmaY0ayAMm0iAAHQTTuCDAU0424.jpg)
![遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁](http://file4.renrendoc.com/view2/M01/35/19/wKhkFmaY0ayAMm0iAAHQTTuCDAU0425.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省錦州市第十九中學(xué)2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標(biāo)系xOy中,點A從出發(fā),繞點O順時針旋轉(zhuǎn)一周,則點A不經(jīng)過()A.點M B.點N C.點P D.點Q2.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數(shù)D.可能為負(fù)數(shù)3.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關(guān)系的圖象是()A. B. C. D.4.某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.95.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體6.下列各組數(shù)中,互為相反數(shù)的是()A.﹣2與2 B.2與2 C.3與 D.3與37.某校九年級(1)班學(xué)生畢業(yè)時,每個同學(xué)都將自己的相片向全班其他同學(xué)各送一張留作紀(jì)念,全班共送了1980張相片,如果全班有x名學(xué)生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19808.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.9.如圖,在中,,分別以點和點為圓心,以大于的長為半徑作弧,兩弧相交于點和點,作直線交于點,交于點,連接.若,則的度數(shù)是()A. B. C. D.10.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.11.對于函數(shù)y=,下列說法正確的是()A.y是x的反比例函數(shù) B.它的圖象過原點C.它的圖象不經(jīng)過第三象限 D.y隨x的增大而減小12.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.14.如圖,∠1,∠2是四邊形ABCD的兩個外角,且∠1+∠2=210°,則∠A+∠D=____度.15.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數(shù)為__________.16.若一個正多邊形的內(nèi)角和是其外角和的3倍,則這個多邊形的邊數(shù)是______.17.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標(biāo)是.18.如圖,在平行四邊形ABCD中,過對角線AC與BD的交點O作AC的垂線交于點E,連接CE,若AB=4,BC=6,則△CDE的周長是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)九(3)班“2017年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.20.(6分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.21.(6分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.22.(8分)定義:如果把一條拋物線繞它的頂點旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達(dá)式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標(biāo);若不存在,說明理由.23.(8分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.24.(10分)如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)25.(10分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F(xiàn),求∠CEF的度數(shù).26.(12分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;(3)若PE=1,求△PBD的面積.27.(12分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點A的對應(yīng)點到旋轉(zhuǎn)中心的距離與OA的長度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點A不經(jīng)過點P故選C.【點睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長是解決此題的關(guān)鍵.2、A【解析】
利用配方法,根據(jù)非負(fù)數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故選:A.【點睛】本題考查配方法的應(yīng)用,非負(fù)數(shù)的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握配方法.3、C【解析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關(guān)系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形4、D【解析】
觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.5、A【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.6、A【解析】
根據(jù)只有符號不同的兩數(shù)互為相反數(shù),可直接判斷.【詳解】-2與2互為相反數(shù),故正確;2與2相等,符號相同,故不是相反數(shù);3與互為倒數(shù),故不正確;3與3相同,故不是相反數(shù).故選:A.【點睛】此題主要考查了相反數(shù),關(guān)鍵是觀察特點是否只有符號不同,比較簡單.7、D【解析】
根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應(yīng)用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關(guān)鍵.8、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;
B、不是軸對稱圖形,是中心對稱圖形,不符合題意;
C、不是軸對稱圖形,是中心對稱圖形,不符合題意;
D、是軸對稱圖形,符合題意.
故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.9、B【解析】
根據(jù)題意可知DE是AC的垂直平分線,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性質(zhì)即可求出∠CDA的度數(shù).【詳解】解:∵DE是AC的垂直平分線,
∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,
故選B.【點睛】本題考查作圖-基本作圖、線段的垂直平分線的性質(zhì)、等腰三角形的性質(zhì),三角形有關(guān)角的性質(zhì)等知識,解題的關(guān)鍵是熟練運用這些知識解決問題,屬于中考??碱}型.10、B【解析】從幾何體的正面看可得下圖,故選B.11、C【解析】
直接利用反比例函數(shù)的性質(zhì)結(jié)合圖象分布得出答案.【詳解】對于函數(shù)y=,y是x2的反比例函數(shù),故選項A錯誤;它的圖象不經(jīng)過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經(jīng)過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確得出函數(shù)圖象分布是解題關(guān)鍵.12、D【解析】
根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質(zhì),兩三角形全等,其對應(yīng)邊和對應(yīng)角都相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
先求出球的總數(shù),再根據(jù)概率公式求解即可.【詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數(shù)=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.【點睛】本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.14、210.【解析】
利用鄰補角的定義求出∠ABC+∠BCD,再利用四邊形內(nèi)角和定理求得∠A+∠D.【詳解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案為:210.【點睛】本題考查了四邊形的內(nèi)角和定理以及鄰補角的定義,利用鄰補角的定義求出∠ABC+∠BCD是關(guān)鍵.15、65°或25°【解析】
首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,
∴∠EAD=∠EAB,
∵AD∥BC,
∴∠EAD=∠AEB,
∴∠BAD=∠AEB,
∵∠ABC=50°,
∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,
∴∠EAD=∠EAB=,
∵AD∥BC,
∴∠AEB=∠DAE=,∠DAB=∠ABC,
∵∠ABC=50°,
∴∠AEB=×50°=25°.
故答案為:65°或25°.【點睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.16、8【解析】
解:設(shè)邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個多邊形的邊數(shù)是8.17、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設(shè)A1的坐標(biāo)為(x,y),設(shè)∠AOX=α,∠A1OD=β,A1坐標(biāo)(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標(biāo)為(﹣b,a).【點評】重點理解三角函數(shù)的定義和求解方法,主要應(yīng)用公式sinα=cosβ,cosα=sinβ.18、1【解析】
由平行四邊形ABCD的對角線相交于點O,OE⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AE=CE,又由平行四邊形ABCD的AB+BC=AD+CD=1,繼而可得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周長為:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案為1.【點睛】本題考查了平行四邊形的性質(zhì),線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)他們獲獎機會不相等,理由見解析.【解析】
(1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結(jié)果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率.【詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,∴獲獎的概率是;故答案為;(2)他們獲獎機會不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有12種情況,∴P(小芳獲獎)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有10種情況,∴P(小明獲獎)=,∵P(小芳獲獎)≠P(小明獲獎),∴他們獲獎的機會不相等.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】
(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進(jìn)而得出B點坐標(biāo),然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設(shè)直線y1=kx+b與x軸交于C,求出C點坐標(biāo),根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標(biāo)是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設(shè)直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標(biāo)以及得出S△AOB=S△AOC﹣S△BOC是解題的關(guān)鍵.21、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計算方法.22、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】
(1)當(dāng)拋物線繞其頂點旋轉(zhuǎn)180°后,拋物線的頂點坐標(biāo)不變,只是開口方向相反,則可根據(jù)頂點式寫出旋轉(zhuǎn)后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標(biāo)C、C′,由點的坐標(biāo)可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當(dāng)AC為對角線時,由中點坐標(biāo)可知點P不存在,當(dāng)AC為邊時,分兩種情況可求得點P的坐標(biāo).【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標(biāo)為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉(zhuǎn)180°后拋物線的頂點坐標(biāo)不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標(biāo)為(1,c-1),與y軸的交點C的坐標(biāo)為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標(biāo)為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標(biāo)為1,∴∠CDC'=90°,由對稱性質(zhì)可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標(biāo)為(,?),設(shè)P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數(shù)解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側(cè),則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標(biāo)為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側(cè),則AQ∥CP且AQ=CP,∴點P的橫坐標(biāo)為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數(shù)綜合題型,主此題主要考查了根據(jù)二次函數(shù)的圖象的變換求拋物線的解析式,解題的關(guān)鍵是求出旋轉(zhuǎn)后拋物線的頂點坐標(biāo)以及確定出點P的位置,注意分情況討論.23、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結(jié)OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB為⊙O的切線,B為切點,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切線;(2)連結(jié)BE.如圖2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=1,則BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC?PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,∵AC=BC,OA=OE,即OC為△ABE的中位線.∴OC=BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴,即,解得BD=.24、調(diào)整后的滑梯AD比原滑梯AB增加2.5米【解析】試題分析:Rt△ABD中,根據(jù)30°的角所對的直角邊是斜邊的一半得到AD的長,然后在Rt△ABC中,求得AB的長后用即可求得增加的長度.試題解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD?AB=6?3.53≈2.5(m).∴調(diào)整后的滑梯AD比原滑梯AB增加2.5米.25、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.26、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進(jìn)而得出答案;
(2)首先得出△PCE∽△DCB,進(jìn)而求出∠ACB=∠CBD,即可得出AC與BD的位置關(guān)系;
(3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進(jìn)而根據(jù)三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結(jié)論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【點睛】本題考查相似三角形的性質(zhì)和判定,解題的關(guān)鍵是掌握相似三角形的性質(zhì)和判定.27、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中學(xué)藝術(shù)中心租用協(xié)議
- 2025年烏龍茶供需雙方協(xié)議
- 2025年服裝批發(fā)合同標(biāo)準(zhǔn)格式
- 2025年企業(yè)辦公樓保安雇傭合同范文
- 2025年勞動合同法損害賠償標(biāo)準(zhǔn)解析
- 2025年城市公交特許協(xié)議策劃
- 2025年工資談判集體協(xié)議正式頒布
- 2025年勞務(wù)協(xié)同協(xié)議范本
- 2025年促進(jìn)供應(yīng)鏈金融服務(wù)合作協(xié)議
- 2025年化工產(chǎn)品倉儲租賃合同范本
- 商業(yè)銀行的風(fēng)險審計與內(nèi)部控制
- 2024項目管理人員安全培訓(xùn)考試題及參考答案AB卷
- 2025年與商場合作協(xié)議樣本(5篇)
- 2024年12月青少年機器人技術(shù)等級考試?yán)碚摼C合試卷(真題及答案)
- 網(wǎng)絡(luò)與社交媒體管理制度
- 2025年春新外研版(三起)英語三年級下冊課件 Unit1第1課時Startup
- 2025年安徽碳鑫科技有限公司招聘筆試參考題庫含答案解析
- 2025廣東珠海高新區(qū)科技產(chǎn)業(yè)局招聘專員1人歷年高頻重點提升(共500題)附帶答案詳解
- 數(shù)學(xué)-福建省泉州市2024-2025學(xué)年高三上學(xué)期質(zhì)量監(jiān)測(二)試卷和答案(泉州二模)
- 潤滑油、潤滑脂培訓(xùn)課件
- 2025年寒假實踐特色作業(yè)設(shè)計模板
評論
0/150
提交評論