江蘇省東臺市第一聯(lián)盟2022-2023學年數(shù)學九上期末學業(yè)水平測試試題含解析_第1頁
江蘇省東臺市第一聯(lián)盟2022-2023學年數(shù)學九上期末學業(yè)水平測試試題含解析_第2頁
江蘇省東臺市第一聯(lián)盟2022-2023學年數(shù)學九上期末學業(yè)水平測試試題含解析_第3頁
江蘇省東臺市第一聯(lián)盟2022-2023學年數(shù)學九上期末學業(yè)水平測試試題含解析_第4頁
江蘇省東臺市第一聯(lián)盟2022-2023學年數(shù)學九上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象向上平移個單位得到的圖象的解析式為()A. B. C. D.2.正六邊形的半徑為4,則該正六邊形的邊心距是()A.4 B.2 C.2 D.3.如圖,是⊙的直徑,弦⊥于點,,則()A. B. C. D.4.下列命題錯誤的是()A.對角線互相垂直平分的四邊形是菱形B.一組對邊平行,一組對角相等的四邊形是平行四邊形C.矩形的對角線相等D.對角線相等的四邊形是矩形5.如圖,△AOB縮小后得到△COD,△AOB與△COD的相似比是3,若C(1,2),則點A的坐標為()A.(2,4) B.(2,6) C.(3,6) D.(3,4)6.如圖,四邊形內(nèi)接于⊙,.若⊙的半徑為2,則的長為()A. B.4 C. D.37.如圖,將線段AB先向右平移5個單位,再將所得線段繞原點按順時針方向旋轉90°,得到線段AB,則點B的對應點B′的坐標是()A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)8.若將半徑為12cm的半圓形紙片圍成一個圓錐的側面,則這個圓錐的底面圓半徑是()A.2cm B.3cm C.4cm D.6cm9.對于二次函數(shù)y=2(x+1)(x﹣3),下列說法正確的是()A.圖象過點(0,﹣3) B.圖象與x軸的交點為(1,0),(﹣3,0)C.此函數(shù)有最小值為﹣6 D.當x<1時,y隨x的增大而減小10.△ABC中,∠ACB=90°,CD⊥AB于D,已知:cos∠A=,則sin∠DCB的值為()A. B. C. D.11.已知點都在雙曲線上,且,則的取值范圍是()A. B. C. D.12.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.2二、填空題(每題4分,共24分)13.如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點,已知∠C=90°,⊙O半徑長為1cm,BC=3cm,則AD長度為__cm.14.點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),則m=_____.15.如圖,矩形ABCD中,AB=2,BC=,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1﹣S2為_____.16.點向左平移兩個單位后恰好位于雙曲線上,則__________.17.如圖,點D、E分別是線段AB、AC上一點∠AED=∠B,若AB=8,BC=7,AE=5則,則DE=_____.18.雙曲線經(jīng)過點,,則______(填“”,“”或“”).三、解答題(共78分)19.(8分)如圖,AG是∠PAQ的平分線,點E在AQ上,以AE為直徑的⊙0交AG于點D,過點D作AP的垂線,垂足為點C,交AQ于點B.(1)求證:直線BC是⊙O的切線;(2)若⊙O的半徑為6,AC=2CD,求BD的長20.(8分)如圖,中,.以點為圓心,為半徑作恰好經(jīng)過點.是否為的切線?請證明你的結論.為割線,.當時,求的長.21.(8分)如圖,在平面直角坐標系中,頂點為(11,﹣)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側),已知A點坐標為(0,8).(1)求此拋物線的解析式;(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關系,并給出證明;(3)連接AC,在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形,若存在,請直接寫出點P的坐標,若不存在,請說明理由.22.(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.(1)求m、k、b的值;(2)連接OA、OB,計算三角形OAB的面積;(3)結合圖象直接寫出不等式的解集.23.(10分)如圖,⊙為的外接圓,,過點的切線與的延長線交于點,交于點,.(1)判斷與的位置關系,并說明理由;(2)若,求的長.24.(10分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的兩點,與軸交于點.⑴求該反比例函數(shù)和一次函數(shù)的解析式;⑵在軸上找一點使最大,求的最大值及點的坐標;⑶直接寫出當時,的取值范圍.25.(12分)在邊長為1的小正方形網(wǎng)格中,的頂點均在格點上,將繞點逆時針旋轉,得到,請畫出.26.在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.銷售量y(千克)…34.83229.628…售價x(元/千克)…22.62425.226…(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

參考答案一、選擇題(每題4分,共48分)1、B【分析】直接根據(jù)“上加下減”的原則進行解答即可.【詳解】由“上加下減”的原則可知,把二次函數(shù)y=x2的圖象向上平移2個單位,得到的新圖象的二次函數(shù)解析式是:y=x2+2.故答案選B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解題的關鍵是熟練的掌握二次函數(shù)圖象與幾何變換.2、C【分析】分析出正多邊形的內(nèi)切圓的半徑就是正六邊形的邊心距,即為每個邊長為4的正三角形的高,從而構造直角三角形即可解.【詳解】解:半徑為4的正六邊形可以分成六個邊長為4的正三角形,

而正多邊形的邊心距即為每個邊長為4的正三角形的高,

∴正六多邊形的邊心距==2.故選C.【點睛】本題考查學生對正多邊形的概念掌握和計算的能力.解答這類題往往一些學生因對正多邊形的基本知識不明確,將多邊形的半徑與內(nèi)切圓的半徑相混淆而造成錯誤計算.3、A【分析】根據(jù)垂徑定理可得出CE的長度,在Rt△OCE中,利用勾股定理可得出OE的長度,再利用AE=AO+OE即可得出AE的長度.【詳解】∵弦CD⊥AB于點E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故選A.【點睛】本題考查了垂徑定理以及勾股定理,利用垂徑定理結合勾股定理求出OE的長度是解題的關鍵.4、D【分析】根據(jù)矩形、菱形、平行四邊形的知識可判斷出各選項,從而得出答案.【詳解】A、對角線互相垂直平分的四邊形是菱形,命題正確,不符合題意;B、一組對邊平行,一組對角相等的四邊形是平行四邊形,命題正確,不符合題意;C、矩形的對角線相等,命題正確,不符合題意;D、對角線相等的四邊形不一定是矩形,例如等腰梯形,故本選項符合題意.故選:D.【點睛】本題主要考查了命題與定理的知識,解答本題的關鍵是熟練掌握平行四邊形、菱形以及矩形的性質,此題難度不大.5、C【解析】根據(jù)位似變換的性質計算即可.【詳解】由題意得,點A與點C是對應點,△AOB與△COD的相似比是3,∴點A的坐標為(1×3,2×3),即(3,6),故選:C.【點睛】本題考查的是位似變換的性質,掌握在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或﹣k是解題的關鍵.6、A【分析】圓內(nèi)接四邊形的對角互補,可得∠A,圓周角定理可得∠BOD,再利用等腰三角形三線合一、含有30°直角三角形的性質求解.【詳解】連接OB、OD,過點O作OE⊥BD于點E,∵∠BOD=120°,∠BOD+∠A=180°,∴∠A=60°,∠BOD=2∠A=120°,∵OB=OD,OE⊥BD,∴∠EOD=∠BOD=60°,BD=2ED,∵OD=2,∴OE=1,ED=,∴BD=2,故選A.【點睛】本題考查圓內(nèi)接四邊形的對角互補、圓周角定理、等腰三角形的性質,熟悉“三線合一”是解答的關鍵.7、D【解析】在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個整數(shù)a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度;圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.常見的是旋轉特殊角度如:30°,45°,60°,90°,180°.【詳解】將線段AB先向右平移5個單位,點B(2,1),連接OB,順時針旋轉90°,則B'對應坐標為(1,-2),故選D.【點睛】本題考查了圖形的平移與旋轉,熟練運用平移與旋轉的性質是解題的關鍵.8、D【解析】解:圓錐的側面展開圖的弧長為2π×12÷2=12π(cm),∴圓錐的底面半徑為12π÷2π=6(cm),故選D.9、D【分析】通過計算自變量x對應的函數(shù)值可對A進行判斷;利用拋物線與x軸的交點問題,通過解方程2(x+1)(x﹣3)=0可對B進行判斷;把拋物線的解析式配成頂點式,然后根據(jù)二次函數(shù)的性質對C、D進行判斷.【詳解】解:A、當x=0時,y=2(x+1)(x﹣3)=﹣6,則函數(shù)圖象經(jīng)過點(0,﹣6),所以A選項錯誤;B、當y=0時,2(x+1)(x﹣3)=0,解得x1=﹣1,x2=3,則拋物線與x軸的交點為(﹣1,0),(3,0),所以B選項錯誤;C、y=2(x+1)(x﹣3)=2(x﹣1)2﹣8,則函數(shù)有最小值為﹣8,所以D選項錯誤;D、拋物線的對稱軸為直線x=1,開口向上,則當x<1時,y隨x的增大而減小,所以D選項正確.故選:D.【點睛】本題考查了二次函數(shù)的圖像和性質,函數(shù)的最值,增減性,與坐標軸交點坐標熟練掌握是解題的關鍵10、C【分析】設,根據(jù)三角函數(shù)的定義結合已知條件可以求出AC、CD,利用∠BCD=∠A,即可求得答案.【詳解】∵,

∴,

∵,

∴設,則,

∴,

∵,

∴,,

∴,

∴.故選:C.【點睛】本題考查直角三角形的性質、三角函數(shù)的定義、勾股定理、同角的余角相等等知識,熟記性質是解題的關鍵.11、D【分析】分別將A,B兩點代入雙曲線解析式,表示出和,然后根據(jù)列出不等式,求出m的取值范圍.【詳解】解:將A(-1,y1),B(2,y2)兩點分別代入雙曲線,得,,∵y1>y2,,解得,故選:D.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解不等式.反比例函數(shù)圖象上的點的坐標滿足函數(shù)解析式.12、C【分析】通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質和一次函數(shù)圖象性質,解答過程中要注意函數(shù)圖象變化與動點位置之間的關系.二、填空題(每題4分,共24分)13、3【分析】如圖,連接OD、OE、OF,由切線的性質和切線長定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接著證明四邊形OECF為正方形,則CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的長.【詳解】解:如圖,連接OE,OF,OD,∵⊙O為△ABC內(nèi)切圓,與三邊分別相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四邊形OECF為矩形而OF=OE,∴四邊形OECF為正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案為:3【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心,切線的性質,切線長定理,勾股定理,正方形的判定和性質,熟悉切線長定理是本題的關鍵.14、1【分析】直接利用關于原點對稱點的性質得出答案.【詳解】∵點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),∴m=1.故答案為:1.【點睛】此題主要考查了關于原點對稱點的性質,正確把握對應點橫縱坐標的關系是解題關鍵.15、3﹣【分析】根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1﹣S2的值.【詳解】解:∵在矩形ABCD中,AB=2,BC=,F(xiàn)是AB中點,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案為:3﹣.【點睛】此題考查的是求不規(guī)則圖形的面積,掌握矩形的性質和扇形的面積公式是解決此題的關鍵.16、【分析】首先求出點P平移后的坐標,然后代入雙曲線即可得解.【詳解】點向左平移兩個單位后的坐標為,代入雙曲線,得∴故答案為-1.【點睛】此題主要考查坐標的平移以及雙曲線的性質,熟練掌握,即可解題.17、【分析】先根據(jù)題意得出△AED∽△ABC,再由相似三角形的性質即可得出結論.【詳解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案為:.【點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形的對應邊成比例是解答此題的關鍵.18、>【分析】將點A、B的坐標分別代入雙曲線的解析式,求得、,再比較、的大小即可.【詳解】雙曲線經(jīng)過點,,當時,,當時,,∴.故答案為:>.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標特征,直接將橫坐標代入解析式求得縱坐標,再作比較更為簡單.三、解答題(共78分)19、(1)證明見詳解;(2)8.【分析】(1)根據(jù)角平分線的定義和同圓的半徑相等可得OD∥AC,證明OD⊥CB,可得結論;(2))在Rt△ACD中,設CD=a,則AC=2a,AD=,證明△ACD∽△ADE,表示a=,由平行線分線段成比例定理得:,代入可得結論.【詳解】(1)證明:連接OD,∵AG是∠HAF的平分線,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直線BC是⊙O的切線;(2)解:在Rt△ACD中,設CD=a,則AC=2a,AD=,連接DE,∵AE是⊙O的直徑,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴,由(1)知:OD∥AC,解得BD=【點睛】本題考查切線的判定、勾股定理、相似三角形的判定與性質,根據(jù)相似三角形的性質列方程解決問題是關鍵.20、(1)是的切線,理由詳見解析;(2)【分析】(1)根據(jù)題意連接,利用平行四邊形的判定與性質進行分析證明即可;(2)由題意作于,連接,根據(jù)平行四邊形的性質以及勾股定理進行分析求解.【詳解】解:是的切線.理由如下.連接,如下圖,是平行四邊形,是的切線作于,連接,如上圖,由,是平行四邊形【點睛】本題考查平行四邊形和圓相關,熟練掌握平行四邊形的判定與性質以及圓的相關性質是解題的關鍵.21、(1);(2)對稱軸l與⊙C相交,見解析;(3)P(30,﹣2)或(41,100)【分析】(1)已知拋物線的頂點坐標,可用頂點式設拋物線的解析式,然后將A點坐標代入其中,即可求出此二次函數(shù)的解析式;(2)根據(jù)拋物線的解析式,易求得對稱軸l的解析式及B、C的坐標,分別求出直線AB、BD、CE的解析式,再求出CE的長,與到拋物線的對稱軸的距離相比較即可;(3)分∠ACP=90°、∠CAP=90°兩種情況,分別求解即可.【詳解】解:(1)設拋物線為y=a(x﹣11)2﹣,∵拋物線經(jīng)過點A(0,8),∴8=a(0﹣11)2﹣,解得a=,∴拋物線為y==;(2)設⊙C與BD相切于點E,連接CE,則∠BEC=∠AOB=90°.∵y==0時,x1=11,x2=1.∴A(0,8)、B(1,0)、C(11,0),∴OA=8,OB=1,OC=11,BC=10;∴AB===10,∴AB=BC.∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴,∴△OAB≌△EBC(AAS),∴OB=EC=1.設拋物線對稱軸交x軸于F.∵x=11,∴F(11,0),∴CF=11﹣11=5<1,∴對稱軸l與⊙C相交;(3)由點A、C的坐標得:直線AC的表達式為:y=﹣x+8,①當∠ACP=90°時,則直線CP的表達式為:y=2x﹣32,聯(lián)立直線和拋物線方程得,解得:x=30或11(舍去),故點P(30,﹣2);當∠CAP=90°時,同理可得:點P(41,100),綜上,點P(30,﹣2)或(41,100);【點睛】本題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質、直線與圓的位置關系、圖形面積的求法等知識,正確表示出S△PAC=S△AQP+S△CQP是解題關鍵.22、(1)m=1,k=1,b=-1;(1);(3)-1<x<0或x>1.【解析】試題分析:(1)先由反比例函數(shù)上的點A(1,1)求出m,再由點B(﹣1,n)求出n,則由直線經(jīng)過點A、B,得二元一次方程組,求得m、k、b;(1)△AOB的面積=△BOC的面積+△AOC的面積;(3)由圖象直接寫出不等式的解集.試題解析:(1)由題意得:,m=1,當x=-1時,,∴B(-1,-1),∴,解得,綜上可得,m=1,k=1,b=-1;(1)如圖,設一次函數(shù)與y軸交于C點,當x=0時,y=-1,∴C(0,-1),∴;(3)由圖可知,-1<x<0或x>1.考點:反比例函數(shù)與一次函數(shù)的交點問題.23、(1)OE∥BC.理由見解析;(2)【分析】(1)連接OC,根據(jù)已知條件可推出,進一步得出結論得以證明;(2)根據(jù)(1)的結論可得出∠E=∠BCD,對應的正切值相等,可得出CE的值,進一步計算出OE的值,在Rt△AFO中,設OF=3x,則AF=4x,解出x的值,繼而得出OF的值,從而可得出答案.【詳解】解:(1)OE∥BC.理由如下:連接OC,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.∴∠EFC=∠ACB=90,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tanE=tan∠BCD=,∴.∴OE2=OC2+CE2=62+82,∴OE=10又由(1)知∠EFC=90,∴∠AFO=90.在Rt△AFO中,∵tanA=tanE=,∴設OF=3x,則AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:∴,∴.【點睛】本題是一道關于圓的綜合題目,涉及到的知識點有切線的性質,平行線的判定定理,三角形內(nèi)角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論