




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第13講函數(shù)的應用【學習目標】1.結(jié)合學過的函數(shù)圖象,了解函數(shù)零點與方程解的關(guān)系2.結(jié)合具體連續(xù)函數(shù)及其圖象的特點,了解函數(shù)零點存在定理,探索用二分法求方程近似解的思路并會畫程序框圖,能借助計算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.3.理解函數(shù)模型是描述客觀世界中變量關(guān)系和規(guī)律的重要數(shù)學語言和工具,在實際情境中,會選擇合適的函數(shù)類型刻畫現(xiàn)實問題的變化規(guī)律.4.結(jié)合現(xiàn)實情境中的具體問題,利用計算工具,比較對數(shù)函數(shù)、一元一次函數(shù)、指數(shù)函數(shù)增長速度的差異,理解“對數(shù)增長”“直線上升”“指數(shù)爆炸”等術(shù)語的現(xiàn)實含義.5.收集、閱讀一些現(xiàn)實生活、生產(chǎn)實際或者經(jīng)濟領(lǐng)域中的數(shù)學模型,體會人們是如何借助函數(shù)刻畫實際問題的,感悟數(shù)學模型中參數(shù)的現(xiàn)實意義.【基礎(chǔ)知識】一、函數(shù)的零點1.對于函數(shù)y=f(x),把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)解,也就是函數(shù)y=f(x)的圖象與x軸的公共點的橫坐標.注意:函數(shù)的零點不是一個點,而是f(x)=0的實數(shù)解.2.方程f(x)=0有實數(shù)解?函數(shù)y=f(x)有零點?函數(shù)y=f(x)的圖象與x軸有公共點.3.如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)至少有一個零點,即存在c∈(a,b),使得f(c)=0,這個c也就是f(x)=0的解.注意:(1)函數(shù)y=f(x)在(a,b)內(nèi)有零點,f(a)·f(b)<0不一定成立.4.若連續(xù)不斷的曲線y=f(x)在區(qū)間[a,b]上有f(a)·f(b)<0,y=f(x)在(a,b)內(nèi)一定有零點,但不能確定有幾個.【解讀】1.一個函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點必須同時滿足:①函數(shù)f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線;②f(a)·f(b)<0.這兩個條件缺一不可.可從函數(shù)y=eq\f(1,x)來理解,易知f(-1)·f(1)=-1×1<0,但顯然y=eq\f(1,x)在(-1,1)內(nèi)沒有零點.2.若函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,且在兩端點處的函數(shù)值f(a),f(b)異號,則函數(shù)y=f(x)在(a,b)上的圖象至少穿過x軸一次,即方程f(x)=0在區(qū)間(a,b)內(nèi)至少有一個實數(shù)解C.3.函數(shù)零點存在定理只能判斷出零點的存在性,而不能判斷出零點的個數(shù).如圖①②,雖然都有f(a)·f(b)<0,但圖①中函數(shù)在區(qū)間(a,b)內(nèi)有4個零點,圖②中函數(shù)在區(qū)間(a,b)內(nèi)僅有1個零點.4.函數(shù)零點存在定理是不可逆的,因為f(a)·f(b)<0可以推出函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)存在零點.但是,已知函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)存在零點,不一定推出f(a)·f(b)<0.如圖③,雖然在區(qū)間(a,b)內(nèi)函數(shù)有零點,但f(a)·f(b)>0.5.如果單調(diào)函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有唯一的零點,即存在唯一的c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的實數(shù)解.二、二分法1.對于在區(qū)間[a,b]上圖象連續(xù)不斷且f(a)f(b)<0的函數(shù)y=f(x),通過不斷地把它的零點所在區(qū)間eq\o(□,\s\up1(03))一分為二,使所得區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法.2.二分法求方程近似解的步驟給定精確度ε,用二分法求函數(shù)y=f(x)零點x0的近似值的一般步驟如下:(1)確定零點x0的初始區(qū)間[a,b],驗證f(a)f(b)<0.(2)求區(qū)間(a,b)的中點C.(3)計算f(c),并進一步確定零點所在的區(qū)間:①若f(c)=0(此時x0=c),則c就是函數(shù)的零點;②若f(a)f(c)<0(此時x0∈(a,c)),則令b=c;③若f(c)f(b)<0(此時x0∈(c,b)),則令a=C.(4)判斷是否達到精確度ε:若|a-b|<ε,則得到零點近似值a(或b);否則重復步驟(2)~(4).三、函數(shù)模型1.函數(shù)模型應用的兩個方面(1)利用已知函數(shù)模型解決問題.(2)建立恰當?shù)暮瘮?shù)模型,并利用所得函數(shù)模型解釋有關(guān)現(xiàn)象,對某些發(fā)展趨勢eq\o(□,\s\up1(04))進行預測.2.用函數(shù)模型解決實際問題的步驟(1)審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,用函數(shù)刻畫實際問題,初步選擇模型.(2)建模:將文字語言轉(zhuǎn)化為數(shù)學語言,利用數(shù)學知識,建立相應的函數(shù)模型.(3)求模:求解函數(shù)模型,得到數(shù)學結(jié)論.(4)還原:利用數(shù)學知識和方法得出的結(jié)論還原到實際問題中.可將這些步驟用框圖表示如下:3.數(shù)據(jù)擬合(1)定義:通過一些數(shù)據(jù)尋求事物規(guī)律,往往是通過繪出這些數(shù)據(jù)在直角坐標系中的點,觀察這些點的整體特征,看它們接近我們熟悉的哪一種函數(shù)圖象,選定函數(shù)形式后,將一些數(shù)據(jù)代入這個函數(shù)的一般表達式,求出具體的函數(shù)表達式,再做必要的檢驗,基本符合實際,就可以確定這個函數(shù)基本反映了事物規(guī)律,這種方法稱為數(shù)據(jù)擬合.(2)數(shù)據(jù)擬合的步驟①以所給數(shù)據(jù)作為點的坐標,在平面直角坐標系中繪出各點;②依據(jù)點的整體特征,猜測這些點所滿足的函數(shù)形式,設(shè)其一般形式;③取特殊數(shù)據(jù)代入,求出函數(shù)的具體解析式;④做必要的檢驗.【考點剖析】考點一:確定函數(shù)零點個數(shù)例1.(2022學年廣東省茂名市重點中學高一下學期期中)函數(shù)的零點的個數(shù)為(
)A.0 B.1 C.2 D.3考點二:確定函數(shù)零點所在區(qū)間例2.(2022學年陜西省安康中學高一上學期期末)已知函數(shù),下列含有函數(shù)零點的區(qū)間是(
)A. B. C. D.考點三:根據(jù)函數(shù)零點滿足條件求參數(shù)范圍例3.(2022學年黑龍江省佳木斯市第一中學高一下學期開學考試)已知函數(shù),若恰有兩個零點.則正數(shù)a的取值范圍______.考點四:二分法的應用例4.(2022學年江蘇省南京師范大學附屬中學江寧分校高一下學期期中)用二分法研究函數(shù)的零點時,第一次計算,得,,第二次應計算,則等于(
)A.1 B. C.0.25 D.0.75考點五:一次函數(shù)與二次函數(shù)模型例5.(2022學年湖南省天壹名校聯(lián)盟高一上學期期中聯(lián)考)某社區(qū)超市的某種商品的日利潤y(單位:元)與該商品的當日售價x(單位:元)之間的關(guān)系為,那么該商品的日利潤最大時,當日售價為___________元.考點六:指數(shù)函數(shù)模型例6.(2022學年陜西省銅川市第一中學高一上學期期中)某工廠新購置并安裝了先進的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣中的污染物數(shù)量P(單位:)與過濾時間(單位:)間的關(guān)系為(,均為非零常數(shù),為自然對數(shù)的底數(shù)),其中為時廢氣中的污染物數(shù)量,經(jīng)測試過濾5h后還剩余80%的污染物.(1)求常數(shù)的值;(2)試計算廢氣中的污染物減少到40%至少需要多長時間.(精確到1,參考數(shù)據(jù):,)考點七:對數(shù)函數(shù)模型例7.據(jù)統(tǒng)計,每年到鄱陽湖國家濕地公園越冬的白鶴數(shù)量y(只)與時間x(年)近似滿足關(guān)系y=alog3(x+2),觀測發(fā)現(xiàn)2013年冬(作為第1年)有越冬白鶴3000只,估計到2019年冬有越冬白鶴(
)A.4000只 B.5000只 C.6000只 D.7000只考點八:分段函數(shù)模型例8.(2022學年湖北省云學新高考聯(lián)盟學校高一下學期5月聯(lián)考)某科技企業(yè)生產(chǎn)一種電子設(shè)備的年固定成本為600萬元,除此之外每臺機器的額外生產(chǎn)成本與產(chǎn)量滿足一定的關(guān)系式.設(shè)年產(chǎn)量為x(,)臺,若年產(chǎn)量不足70臺,則每臺設(shè)備的額外成本為萬元;若年產(chǎn)量大于等于70臺不超過200臺,則每臺設(shè)備的額外成本為萬元.每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(臺)的關(guān)系式;(2)當年產(chǎn)量為多少臺時,年利潤最大,最大值為多少?考點九:函數(shù)模型的選擇例9.某學校開展研究性學習活動,一組同學得到下面的試驗數(shù)據(jù):現(xiàn)有如下個模擬函數(shù):①;②;③;④.請從中選擇一個模擬函數(shù),使它能近似地反映這些數(shù)據(jù)的規(guī)律,應選________.【真題演練】1.(2022學年山西省高一下學期期中)函數(shù)的零點所在的區(qū)間是(
)A. B. C. D.2.(2022學年重慶市石柱中學校高一上學期月考)某超市宣傳在“雙十一”期間對顧客購物實行一定的優(yōu)惠,超市規(guī)定:①如一次性購物不超過元不予以折扣;②如一次性購物超過元但不超過元的,按標價給予九折優(yōu)惠;③如一次性購物超過元的,其中元給予折優(yōu)惠,超過元的部分給予八五折優(yōu)惠.某人兩次去該超市購物分別付款元和元,如果他只去一次購買同樣的商品,則應付款(
)A.元 B.元 C.元 D.元3.已知函數(shù),若函數(shù)有兩個零點,則實數(shù)的取值范圍是(
)A. B.C. D.4.(多選)(2022學年福建省莆田第二十五中學高一上學期期末)設(shè),某學生用二分法求方程的近似解(精確度為),列出了它的對應值表如下:0123若依據(jù)此表格中的數(shù)據(jù),則得到符合要求的方程的近似解可以為(
)A.1.31 B.1.38 C.1.43 D.1.445.(多選)(2022學年江蘇省南通市海安市高一上學期期末)已知函數(shù)的圖象在區(qū)間上是一條連續(xù)不斷的曲線,則下列結(jié)論正確的是(
)A.若,則在內(nèi)至少有一個零點B.若,則在內(nèi)沒有零點C.若在內(nèi)沒有零點,則必有D.若在內(nèi)有唯一零點,,則在上是單調(diào)函數(shù)6.(2022學年安徽省江淮十校高一上學期11月檢測)2021年3月20日,國家文物局公布,四川三星堆考古發(fā)掘取得重大進展,考古人員在三星堆遺址內(nèi)新發(fā)現(xiàn)6座祭祀坑,經(jīng)碳14測年法測定,這6座祭祀坑為商代晚期遺址,碳14測年法是根據(jù)碳14的衰變程度測度樣本年代的一種測量方法,已知樣本中碳14的原子數(shù)隨時間(單位:年)的變化規(guī)律是,則該樣本中碳14的原子數(shù)由個減少到個時所經(jīng)歷的時間(單位:年)為______.7.(2022學年四川省攀枝花市第七高級中學校高一上學期期中)已知為上的偶函數(shù),當時,,對于結(jié)論(1)當時,;(2)方程根的個數(shù)可以為;(3)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是;(4)若,關(guān)于的方程有個不同的實根.說法正確的序號是___.8.(2022學年湖北省部分重點中學(六校)高一下學期五月聯(lián)考)自2020新冠疫情爆發(fā)以來,直播電商迅猛發(fā)展,以信息流為代表的各大社交平臺也相繼入場,平臺用短視頻和直播的形式,激發(fā)起用戶情感與場景的共鳴,讓用戶在大腦中不知不覺間自我說服,然后引起消費行動.某廠家往年不與直播平臺合作時,每年都舉行多次大型線下促銷活動,經(jīng)測算,只進行線下促銷活動時總促銷費用為24萬元.為響應當?shù)卣酪哒?,決定采用線上(直播促銷)線下同時進行的促銷模式,與某直播平臺達成一個為期4年的合作協(xié)議,直播費用(單位:萬元)只與4年的總直播時長x(單位:小時)成正比,比例系數(shù)為0.12.已知與直播平臺合作后該廠家每年所需的線下促銷費C(單位:萬元)與總直播時長x(單位:小時)之間的關(guān)系為(,k為常數(shù)).記該廠家線上促銷費用與4年線下促銷費用之和為y(單位:萬元).(1)寫出y關(guān)于x的函數(shù)關(guān)系式;(2)該廠家直播時長x為多少時,可使y最小?并求出y的最小值.【過關(guān)檢測】1.(2022學年云南省昆明市第三中學高一下學期期中)第19屆亞洲運動會將于2022年9月10日至2022年9月25日在浙江省杭州市舉行,換上智慧腦、聰明肺的黃龍體育中心將承辦足球、體操、水球等項目.為了倡導綠色可循環(huán)的理念,場館還配備了先進的污水、雨水過濾系統(tǒng).已知過濾過程中廢水污染物數(shù)量與時間t的關(guān)系為(N0為最初污染物數(shù)量).如果前4小時消除了20%的污染物,那么污染物消除至最初的64%還需要(
)A.3.6小時 B.3.8小時 C.4小時 D.4.2小時2.(2022學年新疆喀什第二中學高一下學期考試)函數(shù)的零點所在區(qū)間為(
)A. B. C. D.3.已知函數(shù),則使函數(shù)有零點的實數(shù)m的取值范圍是(
)A. B.C. D.4.(2022學年天津市河西區(qū)高一上學期期末)為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”,計費方法如下表:每戶每月用水量水價不超過12m3的部分3元/m3超過12m3但不超過18m3的部分6元/m3超過18m3的部分9元/m3若某戶居民本月繳納的水費為90元,則此戶居民本月的用水量為(
)A.17 B.18 C.19 D.205.(多選)(2022學年貴州省黔東南州高一上學期期末)若函數(shù)y=(ax-1)(x+2)的唯一零點為-2,則實數(shù)a可取值為(
)A.-2 B.0 C. D.-6.(多選)(2022學年廣東省茂名市“五校聯(lián)盟”高一上學期期末聯(lián)考)甲、乙兩位股民以相同的資金進行股票投資,在接下來的交易時間內(nèi),甲購買的股票先經(jīng)歷了一次漲停(上漲10%),又經(jīng)歷了一次跌停(下跌10%),乙購買的股票先經(jīng)歷了一次跌停(下跌10%),又經(jīng)歷了一次漲停(上漲10%),則甲,乙的盈虧情況(不考慮其他費用)為(
)A.甲、乙都虧損 B.甲盈利,乙虧損 C.甲虧損,乙盈利 D.甲、乙虧損的一樣多7.(多選)(2022學年云南省昆明市第十中學高一上學期第二次階段考試)在學校周二數(shù)學選修課上,姜老師讓問學們研究函數(shù)的性質(zhì)時,某同學得到如下結(jié)論,則正確的是(
)A.的圖像關(guān)于原點對稱 B.的值域是C.在區(qū)間上是增函數(shù) D.有三個零點8.端午節(jié)來臨之際,商家推出了兩種禮盒進行售賣.A類禮盒中有4個甜味粽,4個肉餡粽;B類禮盒中有2個甜味粽,4個肉餡粽,6個咸鴨蛋,兩種禮盒的成本分別為盒中食品的成本之和,包裝費用忽略不計.其中,每個咸鴨蛋的成本為每個肉餡粽成本的,每個甜味粽的成本比每個肉餡粽的成本少,且每個甜味粽和每個肉餡粽的成本均為整數(shù).已知A類禮盒的售價為50元,利潤率為25%.端午節(jié)當天一共賣出了兩類禮盒共計128盒,且賣出的B類禮盒至少50盒.后續(xù)工作人員在核算總成本的過程中,把每個甜味粽和每個肉餡
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字反詐騙工程師崗位面試問題及答案
- 福建省漳州市平和一中、南靖一中等五校2025屆高一下化學期末學業(yè)水平測試模擬試題含解析
- 山西省同煤二中聯(lián)盟體2025年高二化學第二學期期末預測試題含解析
- 河北省遵化市2025年化學高一下期末復習檢測模擬試題含解析
- 沈陽固定花銷管理辦法
- 江蘇漁船租賃管理辦法
- 杭州客車租賃管理辦法
- 書法社團的教學規(guī)劃與實踐指導
- 道路透層、稀漿封層及防水層的綜合施工方案研究
- 公園施工車輛管理辦法
- 2021衛(wèi)生監(jiān)督法律法規(guī)知識競賽題庫及答案
- 懲罰游戲?qū)W校班會公司早會小游戲晨會年會團建課堂娛樂互動340
- 中國郵政集團有限公司國企招聘筆試真題2024
- 電腦供貨方案、售后服務方案
- 姜黃素項目投資可行性研究報告
- 2025年云南省康旅控股集團有限公司招聘筆試參考題庫含答案解析
- 數(shù)據(jù)資產(chǎn):會計研究的新領(lǐng)域
- 工業(yè)自動化設(shè)備交驗后的保修服務措施
- GB/T 15561-2024數(shù)字指示軌道衡
- 課內(nèi)外文言文對比閱讀專題練(八上)2023年初中語文中考一輪教材復習
- 皮膚科進修后匯報
評論
0/150
提交評論