版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省揭陽市空港經(jīng)濟區(qū)砲臺鎮(zhèn)2025屆九上數(shù)學期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列方程是關于x的一元二次方程的是()A.a(chǎn)x2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+22.如圖,矩形AOBC,點C在反比例的圖象上,若,則的長是()A.1 B.2 C.3 D.43.已知一元二次方程的較小根為x1,則下面對x1的估計正確的是A. B. C. D.4.將6497.1億用科學記數(shù)法表示為()A.6.4971×1012 B.64.971×1010 C.6.5×1011 D.6.4971×10115.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.6.已知二次函數(shù)y=ax2+bx+c(a≠0),函數(shù)y與自變量x的部分對應值如下表所示:x…﹣10123…y…﹣23676…當y<6時,x的取值范圍是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>37.某鋼鐵廠一月份生產(chǎn)鋼鐵560噸,從二月份起,由于改進操作技術,使得第一季度共生產(chǎn)鋼鐵1850噸,問二、三月份平均每月的增長率是多少?若設二、三月份平均每月的增長率為x,則可得方程()A. B.C. D.8.如圖,Rt△ABC中,∠C=90°,AC=3,BC=1.分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BCMN,四塊陰影部分的面積分別為S1、S2、S3、S1.則S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.129.我國古代數(shù)學著作《孫子算經(jīng)》中有“雞兔同籠”問題:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何.”設雞x只,兔y只,可列方程組為()A. B. C. D.10.已知反比例函數(shù)的圖象經(jīng)過點(2,-2),則k的值為A.4 B. C.-4 D.-211.若是方程的兩根,則實數(shù)的大小關系是()A. B. C. D.12.下列函數(shù)中是反比例函數(shù)的是()A. B. C. D.二、填空題(每題4分,共24分)13.在一個不透明的袋子中裝有除顏色外完全相同的3個白球、若干紅球,從中隨機摸取1個球,摸到紅球的概率是,則這個袋子中有紅球_____個.14.慶“元旦”,市工會組織籃球比賽,賽制為單循環(huán)形式(每兩隊之間都賽一場),共進行了45場比賽,求這次有多少隊參加比賽?若設這次有x隊參加比賽,則根據(jù)題意可列方程為_____.15.若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.16.用紙板制作了一個圓錐模型,它的底面半徑為1,高為,則這個圓錐的側(cè)面積為_________.17.如圖,直線y=ax+b過點A(0,2)和點B(﹣3,0),則方程ax+b=0的解是_____.18.邊長為1的正方形,在邊上取一動點,連接,作,交邊于點,若的長為,則的長為__________.三、解答題(共78分)19.(8分)如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.(1)判斷的形狀,并說明理由;(2)若,求的長;(3)設的面積是的面積是,且.若⊙的半徑為,求.20.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖象交于點,且點的橫坐標為.過點作軸交反比例函數(shù)的圖象于點,連接.(1)求反比例函數(shù)的表達式.(2)求的面積.21.(8分)如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的木棧道AB,棧道AB與景區(qū)道路CD平行.在C處測得棧道一端A位于北偏西42°方向,在D處測得棧道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木棧道AB的長度(結果保留整數(shù)).(參考數(shù)據(jù):,,,,,)22.(10分)已知:直線與y軸交于A,與x軸交于D,拋物線y=x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).(1)求拋物線的解析式;(2)點P是直線AE下方拋物線上一動點,求△PAE面積的最大值;(3)動點Q在x軸上移動,當△QAE是直角三角形時,直接寫出點Q的坐標;(4)若點M在y軸上,點F在拋物線上,問是否存在以A、E、M、F為頂點的平行四邊形,若存在直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.23.(10分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.24.(10分)如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點D,函數(shù)(為常數(shù),)的圖象經(jīng)過點D,與AB交于點E,與函數(shù)的圖象在第三象限內(nèi)交于點F,連接AF、EF.(1)求函數(shù)的表達式,并直接寫出E、F兩點的坐標.(2)求△AEF的面積.25.(12分)定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC.(1)請在圖1中再找出一對這樣的角來:=.(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.26.已知如圖,⊙O的半徑為4,四邊形ABCD為⊙O的內(nèi)接四邊形,且∠C=2∠A.(1)求∠A的度數(shù).(2)求BD的長.
參考答案一、選擇題(每題4分,共48分)1、D【解析】試題分析:一元二次方程的一般式為:a+bx+c=0(a、b、c為常數(shù),且a≠0),根據(jù)定義可得:A選項中a有可能為0,B選項中含有分式,C選項中經(jīng)過化簡后不含二次項,D為一元二次方程.考點:一元二次方程的定義2、B【分析】根據(jù)OB的長度即為點C的橫坐標,代入反比例函數(shù)的解析式中即可求出點C的縱坐標,即BC的長度,再根據(jù)矩形的性質(zhì)即可求出OA.【詳解】解:∵∴點C的橫坐標為1將點C的橫坐標代入中,解得y=2∴BC=2∵四邊形AOBC是矩形∴OA=BC=2故選B.【點睛】此題考查的是根據(jù)反比例函數(shù)解析式求點的坐標和矩形的性質(zhì),掌握根據(jù)反比例函數(shù)解析式求點的坐標和矩形的性質(zhì)是解決此題的關鍵.3、A【解析】試題分析:解得,∴較小根為.∵,∴.故選A.4、D【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6497.1億=649710000000=6.4971×1.故選:D.【點睛】此題主要考查科學記數(shù)法,解題的關鍵是熟知科學記數(shù)法的表示方法.5、B【解析】拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.6、D【分析】根據(jù)表格確定出拋物線的對稱軸,開口方向,然后根據(jù)二次函數(shù)的圖像與性質(zhì)解答即可.【詳解】∵當x=1時,y=6;當x=1時,y=6,∴二次函數(shù)圖象的對稱軸為直線x=2,∴二次函數(shù)圖象的頂點坐標是(2,7),由表格中的數(shù)據(jù)知,拋物線開口向下,∴當y<6時,x<1或x>1.故選D.【點睛】本題考察了二次函數(shù)的圖像和性質(zhì),對于二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),當a>0時,開口向上,在對稱軸的左側(cè)y隨x的增大而減小,在對稱軸的右側(cè)y隨x的增大而增大;當a<0時,開口向下,在對稱軸的左側(cè)y隨x的增大而增大,在對稱軸的右側(cè)y隨x的增大而減小.7、D【解析】第一個月是560,第二個月是560(1+x),第三月是560(1+x)2,所以第一季度總計560+560(1+x)+560(1+x)2=1850,選D.8、B【解析】本題先根據(jù)正方形的性質(zhì)和等量代換得到判定全等三角形的條件,再根據(jù)全等三角形的判定定理和面積相等的性質(zhì)得到S、S、、與△ABC的關系,即可表示出圖中陰影部分的面積和.本題的著重點是等量代換和相互轉(zhuǎn)化的思想.【詳解】解:如圖所示,過點F作FG⊥AM交于點G,連接PF.根據(jù)正方形的性質(zhì)可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可證,△KME≌△TPF,△FGK≌△ACT,因為∠QAG=∠AGF=∠AQF=90,所以四邊形AQFG是矩形,則QF//AG,又因為QP//AC,所以點Q、P,F三點共線,故S+S=,S=.因為∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因為∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可證△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本題正確答案為B.【點睛】本題主要考查正方形和全等三角形的判定與性質(zhì).9、D【解析】等量關系為:雞的只數(shù)+兔的只數(shù)=35,2×雞的只數(shù)+4×兔的只數(shù)=94,把相關數(shù)值代入即可得到所求的方程組.【詳解】解:∵雞有2只腳,兔有4只腳,∴可列方程組為:,故選D.【點睛】本題考查了由實際問題抽象出二元一次方程組.如何列出二元一次方程組的關鍵點在于從題干中找出等量關系.10、C【解析】∵反比例函數(shù)的圖象經(jīng)過點(2,-2),∴.故選C.11、A【分析】設,可判斷拋物線開口向下,m、n是其與x軸交點的橫坐標,a、b則是拋物線與直線y=2的交點橫坐標,畫出函數(shù)草圖即可判斷.【詳解】設,可判斷拋物線開口向下,m、n是其與x軸交點的橫坐標,a、b則是拋物線與直線y=2的交點橫坐標,畫出函數(shù)草圖如下:從函數(shù)圖象可以看出:故選:A【點睛】本題考查的是二次函數(shù)與一元二次方程的關系,掌握拋物線與x軸的交點的橫坐標為y=0時,一元二次方程的根是關鍵.12、B【分析】由題意直接根據(jù)反比例函數(shù)的定義對下列選項進行判定即可.【詳解】解:根據(jù)反比例函數(shù)的定義可知是反比例函數(shù),,是一次函數(shù),,是二次函數(shù),都要排除.故選:B.【點睛】本題考查反比例函數(shù)的定義,注意掌握反比例函數(shù)解析式的一般形式,也可以轉(zhuǎn)化為的形式.二、填空題(每題4分,共24分)13、1【解析】解:設紅球有n個由題意得:,解得:n=1.故答案為=1.14、=45【分析】設這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:場.根據(jù)題意可知:此次比賽的總場數(shù)=45場,依此等量關系列出方程.【詳解】解:設這次有x隊參加比賽,則此次比賽的總場數(shù)為場,根據(jù)題意列出方程得:=45,故答案是:.【點睛】考查了由實際問題抽象出一元二次方程,本題的關鍵在于理解清楚題意,找出合適的等量關系,列出方程,再求解.需注意賽制是“單循環(huán)形式”,需使兩兩之間比賽的總場數(shù)除以1.15、0或-1.【解析】由于沒有交待是二次函數(shù),故應分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點.當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即.綜上所述,若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1.16、【分析】根據(jù)圓錐的側(cè)面積公式計算即可得到結果.【詳解】解:根據(jù)題意得:S=π×1×=3π,
故填:3π.【點睛】此題考查了圓錐的計算,熟練掌握圓錐的側(cè)面積公式是解本題的關鍵.17、x=﹣1【分析】所求方程ax+b=0的解,即為函數(shù)y=ax+b圖像與x軸交點橫坐標,根據(jù)已知條件中點B即可確定.【詳解】解:方程ax+b=0的解,即為函數(shù)y=ax+b圖象與x軸交點的橫坐標,∵直線y=ax+b過B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案為:x=﹣1.【點睛】本題主要考查了一次函數(shù)與一元一次方程的關系,掌握一次函數(shù)與一元一次方程之間的關系是解題的關鍵.18、或【分析】根據(jù)正方形的內(nèi)角為90°,以及同角的余角相等得出三角形的兩個角相等,從而推知△ABE∽△ECF,得出,代入數(shù)值得到關于CE的一元二次方程,求解即可.【詳解】解:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF,.解得,CE=或.故答案為:或.【點睛】考查了四邊形綜合題型,需要掌握三角形相似的判定與性質(zhì),正方形的性質(zhì)以及一元二次方程的應用,解題的關鍵是根據(jù)相似三角形得出一元二次方程,難度不大.三、解答題(共78分)19、(1)是等腰三角形,理由見解析;(2)的長為;(3).【解析】(1)首先連接OB,根據(jù)等腰三角形的性質(zhì)由OA=OB得,由點C在過點B的切線上,且,根據(jù)等角的余角相等,易證得∠PBC=∠CPB,即可證得△CBP是等腰三角形;(2)設BC=x,則PC=x,在Rt△OBC中,根據(jù)勾股定理得到,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三線合一的性質(zhì)得,由,通過證得,得出即可求得CD,然后解直角三角形即可求得.【詳解】(1)是等腰三角形,理由:連接,⊙與相切與點,,即,,是等腰三角形(2)設,則,在中,,,,,解得,即的長為;(3)解:作于,,,,,,,,,.【點睛】本題考查了切線的性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)以及三角形相似的判定和性質(zhì).此題難度適中,注意掌握輔助線的作法及數(shù)形結合思想的應用.20、(1);(2)【分析】(1)首先將點B的橫坐標代入一次函數(shù),得出其坐標,然后代入反比例函數(shù),即可得出解析式;(2)首先求出點A的坐標,然后分別求出AC、BD,即可求得面積.【詳解】一次函數(shù)的圖象過點,且點的橫坐標為,,點的坐標為.點在反比例函數(shù)的圖象上,,反比例函數(shù)的表達式為;一次函數(shù)的圖象與軸交于點,當時,,點的坐標為,軸,點的縱坐標與點的縱坐標相同,是2,點在反比例函數(shù)的圖象上,當時,,解得,過作于,則,【點睛】此題主要考查一次函數(shù)與反比例函數(shù)綜合應用,熟練掌握,即可解題.21、【分析】過C作CE⊥AB于E,DF⊥AB交AB的延長線于F,于是得到CE∥DF,推出四邊形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到結論.【詳解】過C作CE⊥AB于E,DF⊥AB交AB的延長線于F,則CE∥DF,∵AB∥CD,∴四邊形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°?BD=80×≈68,BF=sin32°?BD=80×,∴BE=EF-BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE?tan42°=68×,∴AB=AE+BE=+≈139m,答:木棧道AB的長度約為139m.【點睛】本題考查解直角三角形-方向角問題,解題的關鍵是學會添加常用輔助線.構造直角三角形解決問題.22、(1);(2);(3)或;(4)存在,【分析】(1)求出點A坐標后再利用待定系數(shù)法求解;(2)先聯(lián)立直線與拋物線的解析式求出點E坐標,然后過點P作y軸的平行線交拋物線于點N,如圖,設點P的橫坐標為m,則PN的長可與含m的代數(shù)式表示,而△PAE的面積==,于是求△PAE面積的最大值轉(zhuǎn)化為求PN的最大值,再利用二次函數(shù)的性質(zhì)求解即可;(3)先求出AE的長,再設出P點的坐標,然后分三種情況利用勾股定理得到有關P點的橫坐標的方程,解方程即可;(4)分兩種情況討論:若AE為對角線,則AM∥EF,由于過點E與y軸平行的直線與拋物線再無交點,故此種情況不存在;若AE為邊,根據(jù)平行四邊形的性質(zhì)可設M(0,n),則F(6,n+3)或(﹣6,n-3),然后代入拋物線的解析式求解即可.【詳解】解:(1)∵直線與y軸交于A,∴A點的坐標為(0,2),又∵B點坐標為(1,0),∴解得:∴;(2)根據(jù)題意得:,解得:或,∴A(0,2),E(6,5),過點P作y軸的平行線交拋物線于點N,如圖,設P(m,)則N(m,)則PN=()-()=(0<m<6),=+==,∴==,∴當m=3時,△PAE面積有最大值;(3)∵A(0,2),E(6,5),∴AE=3,設Q(x,0),則AQ2=x2+4,EQ2=(x﹣6)2+25,①若Q為直角頂點,則AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此時方程無解,故此時不存在x的值;②若點A為直角頂點,則AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E為直角頂點,則AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x=,即Q(,0);∴Q(1,0)或(,0);(4)若AE為對角線,則AM∥EF,由于過點E與y軸平行的直線與拋物線再無交點,故此時不存在符合題意的點M;若AE為邊,設M(0,n),則F(6,n+3)或(﹣6,n-3),當F(6,n+3)時,此時點E、F重合,不合題意;當F(﹣6,n-3)時,n-3=,解得:n=38,此時點M坐標為(0,38);綜上,存在點M,使以A、E、M、F為頂點的平行四邊形,且點M的坐標是(0,38).【點睛】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法求拋物線的解析式、二次函數(shù)的圖象與性質(zhì)、兩函數(shù)的交點、一元二次方程的解法、勾股定理以及平行四邊形的性質(zhì)等知識,涉及的知識點多、綜合性強,屬于中考壓軸題,熟練掌握上述知識、靈活應用數(shù)形結合以及分類的思想是解題的關鍵.23、(1)見解析;(2)1.【分析】根據(jù)角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關系即可求解.【詳解】(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復雜作圖;平行四邊形的性質(zhì)24、(1),E(2,1),F(xiàn)(-1,-2);(2).【分析】(1)先得到點D的坐標,再求出k的值即可確定反比例函數(shù)解析式;(2)過點F作FG⊥AB,與BA的延長線交于點G.由E、F兩點的坐標,得到AE=1,F(xiàn)G=2-(-1)=3,從而得到△AEF的面積.【詳解】解:(1)∵正方形OABC的邊長為2,∴點D的縱坐標為2,即y=2,將y=2代入y=2x,得到x=1,∴點D的坐標為(1,2).∵函數(shù)的圖象經(jīng)過點D,∴,∴k=2,∴函數(shù)的表達式為.(2)過點F作FG⊥AB,與BA的延長線交于點G.根據(jù)反比例函數(shù)圖象的對稱性可知:點D與點F關于原點O對稱∴點F的坐標分別為(-1,-2),把x=2代入得,y=1;∴點E的坐標(2,1);∴AE=1,F(xiàn)G=2-(-1)=3,∴△AEF的面積為:AE?FG=.25、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四邊形ACEF為正方形,理由見解析;(3)1【分析】(1)根據(jù)題意給出的性質(zhì)即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貓咪寵物合同范例
- 監(jiān)理施工合同范例2014
- 私人買賣煤炭合同范例
- 商標許可備案合同范例
- 涂料工程范例合同范例
- 簽訂固定總價合同范例
- 簡易鋼筋工合同范例
- 工廠產(chǎn)品裝卸合同范例
- 賓館水暖維修合同范例
- 板材拿貨合作合同范例
- 蘇教版七年級歷史知識點
- 陜西省既有村鎮(zhèn)住宅抗震加固技術規(guī)程
- 智聯(lián)國企行測筆試真題
- 2025屆新高考物理熱點精準復習:高中物理6大模塊計算題思路總結
- 2024-2030年中國光電共封裝(CPO)行業(yè)投融資趨勢及發(fā)展前景分析研究報告
- 2025屆江蘇省期無錫市天一實驗學校數(shù)學七年級第一學期期末達標檢測試題含解析
- 城市軌道交通運營管理【共30張課件】
- 學生退學情況說明
- 鋼結構設計智慧樹知到期末考試答案章節(jié)答案2024年山東建筑大學
- DB5334 T 12.5-2024《地理標志證明商標 香格里拉藏香豬》的第5部分疾病防治
- 化學機械漿與半化學機械漿
評論
0/150
提交評論