




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
-17分111.如果函數(shù)f(x)在區(qū)間[a,b]上,f(x)≥0恒成立,則f(a)≥0或f(b)≥0.2.如果函數(shù)f(x)在區(qū)問[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),則f(a)≥0(或f(b)≤0(.3.如果函數(shù)f(x)在區(qū)問[a,b]上,f(x)≥0恒成立,且f(a)=0,f(a)=0(或f(b)=0,f(b)≤0(則fⅡ(a)≥0(或f22若xlnx-2mx(x-1(+ex-1-x≥0對?x≥1恒成立,則實數(shù)m的取值范圍是. 33 44(2020·全國·統(tǒng)考高考真題)已知函數(shù)f(x)=ex+ax2-x.(2024·全國甲卷·高考真題)已知函數(shù)f(x(=(1-ax(ln(1+x(-x.55(全國·高考真題)已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導數(shù).66(2024·浙江寧波·模擬預測)已知函數(shù)f(x)=ex-ax-1.(1)討論f(x)的單調(diào)性;(2024·河南·模擬預測)已知函數(shù)f(x(=alnx+x-1(a∈R(.(1)討論f(x(的單調(diào)性;f(x(≥-2lnx+(lnx(2,求a的取值范圍.77(2024·廣西·三模)已知函數(shù)f(x(=ex-x.(1)求函數(shù)f(x(的極值;(2)若對任意x>0,f(x(>ax2+1,求a的取值范圍.(2024·四川綿陽·模擬預測)已知函數(shù)f(x)=2sinx+ln(x+1)-ax.88 5(2024·云南昆明·一模)已知函數(shù)f(x(=(1)求曲線y=f(x(在點(1,f(1((處的切線方程;(2)當x≥1時,f(x(≤a(x-1(,求a的取值范圍. 6(2024·安徽池州·模擬預測)設函數(shù)f(x(=(1)當a=1時,求曲線y=f(x(在點(0,f(0((處的切線方程;(2)當x≥0時,若f(x(≤a恒成立,求實數(shù)a的取值范圍.99 (全國·高考真題)已知函數(shù)f(x)=ex(ex(全國·高考真題)設函數(shù)f(x(=ex-e-x(1)求證:f(x)的導數(shù)f(x(≥2;(2)若對任意x≥0都有f(x)≥ax,求a的取值范圍.(全國·高考真題)設函數(shù)f(x)=x(ex-1(-ax2(Ⅱ)若當x≥0時f(x)≥0,求a的取值范圍 -17分111.如果函數(shù)f(x)在區(qū)間[a,b]上,f(x)≥0恒成立,則f(a)≥0或f(b)≥0.2.如果函數(shù)f(x)在區(qū)問[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),則f(a)≥0(或f(b)≤0(.3.如果函數(shù)f(x)在區(qū)問[a,b]上,f(x)≥0恒成立,且f(a)=0,f(a)=0(或f(b)=0,f(b)≤0(則fⅡ(a)≥0(或f22若xlnx-2mx(x-1(+ex-1-x≥0對?x≥1恒成立,則實數(shù)m的取值范圍是.【方法一】解:因為xlnx-2mx(x-1(+ex-1-x≥0對?x≥1恒成立,即lnx-2m(x-1(+-1≥0對?x≥1恒成立,記f(x(=lnx-2m(x-1(+-1,x∈[1,+∞(,所以fI(x(=-2m+,令g(x(=-2m+,則gI(x(=≥=>0所以fI(x(在[1,+∞(上是增函數(shù),所以fI(x(≥fI(1(=1-2m當1-2m≥0,即m≤時,f(x(在[1,+∞(上是增函數(shù),所以f(x(≥f(1(=0符合題意;即當x∈(1,x0(時fI(x(<0,f(x(單調(diào)遞減,此時f(x(<f(1(=0,所以m>不符合題意,綜上可得m≤,即m∈【方法二-端點效應】因為xlnx-2mx(x-1(+ex-1-x≥0對?x≥1恒成立,即lnx-2m(x-1(+-1≥0對?x≥1恒成立,記f(x(=lnx-2m(x-1(+-1,x∈[1,+∞(,因為f(1(=0,f(x(≥0欲在x∈[1,+∞(恒成立,則f(x(要在x∈[1,+∞(單調(diào)遞增再證明充分性,當m≤,能否有xlnx-2mx(x-1(+ex-1-x≥0對?x≥1恒成立(證明略)綜上可得m≤,即m∈33 故f(x)≥f(0),f(x)=.所以,f(x)=f(a-1)=lna-a+1=lna-(a-1),【方法二-端點效應】 4故f(x(min=2+a,而f(x(≥0成立,故a+24所以a的最小值為-2.,設P(m,n(為y=f(x(圖象上任意一點,P(m,n(關(guān)于(1,a(的對稱點為Q(2-m,2a-n(,而f(2-m(=ln+a(2-m(+b(2-m=-n+2a,所以Q(2-m,2a-n(也在y=f(x(圖象上,因為f(x(>-2當且僅當1<x<2,故x=1為f(x(=所以f(1(=-2即a=-2,先考慮1<x<2時,f(x(>-2恒成立.此時f(x(>-2即為ln-+2(1-x(+b(x-1(3>0在(1,2(上恒成立,1-t21-t2,1-t21-t2,故gI(t(>0恒成立,故g(t(在(0,1(上為增函數(shù),故g(t(>g(0(=0即f(x(>-2在(1,2(上恒成立.故gI(t(≥0恒成立,故g(t(在(0,1(上為增函數(shù),故g(t(>g(0(=0即f(x(>-2在(1,2(上恒成立.綜上,f(x(>-2在(1,2(上恒成立時b≥-.5即f(x(>-2的解為(1,2(.5故a=-2.即≥0,即fI≥0,f是上的單調(diào)遞增函數(shù),f(x)>f(1)=-2,符合題意;--b得當1<x<時,fI(x)<0,此時,f(x)<f(1)=-2,不符合題意由題意得:0<x≤1,必有f(x)≤-2,所以f(1)=-2,解得a=-2,問題等價于研究當1<x<2,f(x)>-2恒成立,僅需[f(x)+2]min>0,x2-x令h(x)=f(x)+2,hI(x)=1+x2-x3x(2-x)3x(2-x)3x(2-x),3x(2-x),66 (2)(-∞,3]=a-=a-2x=t,則t則f(x)=g(t)=a-=當a=8,f(x)=g(t)==所以f(x)在(0,上單調(diào)遞增,在,上單調(diào)遞減【法一】設g(x)=f(x)-sin2xg(x)=f(x)-2cos2x=g(t)-2(2cos2x-1(=-2(2t-1)=a+2-4t+-設φ(t)=a+2-4t+-φ(t)=-4-+==->0∈(-∞,3],g(x)=φ(t)<a-3≤0即g(x)在(0,上單調(diào)遞減,所以g(x)<g(0)=0.所以當a∈(-∞,3],f(x)<sin2x,符合題意.當t→0,-=-3-2+→-∞,所以φ(t)→-∞.所以?t0g(x)>g(0)=0,不合題意.77綜上,a的取值范圍為(-∞,3].(2)f(x)<sin2x?ax-<sin2x?g(x)=ax-sin2x-<0g(x)=a-2cos2x-,∴g(x)>g(0)=0,不成立.∴g(x)單調(diào)遞減,∴g(x)≤g(0)=0.特上 【答案】(1)f(x(在(0,上單調(diào)遞減則f(x(=1-=1-3x-cos2x-2(1-cos2x(=cos3x+cos2x-23x,2x-2=t3+t2-2=t3-t2+2t2-2=t2(t-1(+2(t+1((t-1(=(t2+2t+2((t-1(,3x=t3>0,所以f(x(=<0在(0,上恒成立,所以f(x(在(0,上單調(diào)遞減.88構(gòu)建g(x(=f(x(+sinx=ax-+sinx(0<x<,則g(x(=a-+cosx(0<x<,若g(x(=f(x(+sinx<0,且g(0(=f(0(+sin0=0,所以f(x(+sinx=sinx-<0,滿足題意;所以f(x(+sinx=ax-+sinx<sinx-<0,滿足題意;所以a的取值范圍為(-∞,0[.因為sinx-sinx=sinxcos2x-sinx=sinx(故sinx-<0在(0,上恒成立,所以f(x(+sinx=ax-+sinx<sinx-<0,滿足題意;當a>0時,因為f(x(+sinx=ax-+sinx=ax-,令g(x(=ax-0<x<,則g(x(=a-,注意到g(0(=a-=a>0,<0,此時g(x(在(0,x1(上有g(shù)(x(>0,所以g(x(在(0,x1(上單調(diào)遞增,99 【答案】(1)當x∈(-∞,0(時,f'(x(<0,f(x(單調(diào)遞減,當x∈(0,+∞(時,f'(x(>0,f(x(單調(diào)遞增.(2),+∞(-x,fI(x(=ex+2x-1,當x∈(-∞,0(時,fI(x(<0,f(x(單調(diào)遞減,fI(x(>0,f(x(單調(diào)遞增.x-3-x-令h(x(=ex-x2-x-1(x≥0(,由h(x(≥0可得:ex-x2-x-1≥0恒成立,只需證當a≥時,f(x)≥x3+1恒成立.當a≥時,f(x)=ex+ax2-x≥ex+?x2-x.只需證明ex+x2-x≥x3+1(x≥0)⑤式成立.(e2-7(x2+4x+(e2-7(x2+4x+2x3+4令h(x)=(x≥0),則hI(x)===,綜上a≥.當x≥0時,f(x)≥x3+1恒成立?ex≥x3+1-ax2+x?x3-ax2+x+1(e-x≤1,記g(x(=x3-ax2+x+1(e-x(x≥0),gI(x(x3-ax2+x+1-x2+2ax-1(e-x=-x[x2-(2a+3(x+4a+2[e-x=-x(x-2a-1((x-2(e-x,所以若滿足g(x(≤1,只需g(2(≤1,即g(2(=(7-4a)e-2≤1?a≥,所以當?≤a<時,③當2a+1≥2即a≥時,g(x(=x3-ax2+x+1(e-x≤x3+x+1(e-x,又由②可知≤a<+x+1(e-x≤1恒成立, 2(2024·全國甲卷·高考真題)已知函數(shù)f(x(=(1-ax(ln(1+x(-x.(2)a≤-(2)求出函數(shù)的二階導數(shù),就a≤-、-<a<0、a≥0分類討論后可得參數(shù)的取值范圍.(1)當a=-2時,f(x)=(1+2x)ln(1+x)-x,故f(x)=2ln(1+x)+-1=2ln(1+x)-+1,因為y=2ln(1+x),y=-+1在(-1,+∞(上為增函數(shù),故f(x)在(-1,+∞(上為增函數(shù),而f(0)=0,故當-1<x<0時,f(x)<0,當x>0時,f(x)>0,故f(x(在x=0處取極小值且極小值為f(0(=0,無極大值.(2)f(x(=-aln(1+x(+-1=-aln(1+x(-,x>0,設s(x(=-aln(1+x(-,x>0,則s(x(=-=-=-,當a≤-時,s(x(>0,故s(x(在(0,+∞(上為增函數(shù),故s(x(>s(0(=0,即f(x(>0,所以f(x(在[0,+∞(上為增函數(shù),故f(x(≥f(0(=0.當-<a<0時,當0<x<-時,s(x(<0,故s(x(在(0,-上為減函數(shù),故在(0,-上s(x(<s(0(,即在(0,-上f(x(<0即f(x(為減函數(shù),同理可得在(0,+∞(上f(x(<f(0(=0恒成立綜上,a≤-. 3(全國·高考真題)已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導數(shù).(2)a∈(-∞,0[.數(shù)h(x(=f(x(-ax,通過二次求導可判斷出hI(x(min=hI(π(=-2-a,hI(x(max=hI=-a;分別在a≤-2,-2<a≤0,0<a<和a≥的情況下根據(jù)導函數(shù)的符號判斷h(x(單調(diào)性,從而確定【詳解】(1)fI(x(=2cosx-cosx+xsinx-1=cosx+xsinx-1令g(x(=cosx+xsinx-1,則gI(x(=-sinx+sinx+xcosx=xcosxI(x(<0fI(x(無零點=0又g(x(在,π(上單調(diào)遞減∴x=x0為g(x(,即fI(x(在,π(上的唯一零點綜上所述:fI(x(在區(qū)間(0,π(存在唯一零點令h(x(=f(x(-ax=2sinx-xcosx-(a+1(x且h(0(=-a,h=-a,h(π(=-2-a∴h(x(min=h(π(=-2-a,h(x(max=h=-a①當a≤-2時,h(x(min=h(π(=-2-a≥0,即h(x(≥0在[0,π[上恒成立∴h(x(在[0,π[上單調(diào)遞增∴h(x(≥h(0(=0,即f(x(-ax≥0,此時f(x(≥ax恒成立∴?x1=0∴h(x(在[0,x1(上單調(diào)遞增,在(x1,π[上單調(diào)遞減∴h(x(≥0在[0,π[上恒成立,即f(x(≥ax恒成立(-a>0∴?x2=0∴h(x(在[0,x2(上單調(diào)遞減,在(x2,上單調(diào)遞增f(x(≥ax不恒成立∴h(x(在(0,上單調(diào)遞減∴h(x(<h(0(=0可知f(x(≥ax不恒成立(2024·浙江寧波·模擬預測)已知函數(shù)f(x)=ex-ax-1.(1)討論f(x)的單調(diào)性;【詳解】(1)f(x(=ex-a,所以當x∈(lna,+∞(時,f(x(>0,f(x(單調(diào)遞增;當x∈(-∞,lna(時,f(x(<0,f(x(單調(diào)遞減;綜上,當a≤0時,f(x(在R上單調(diào)遞增;當a>0時,f(x(在(lna,+∞(上單調(diào)遞增,在(-∞,lna(上單調(diào)遞再令h(x(=(x-1(ex+1,則h(x(則h(x(在(0,+∞(單調(diào)遞增,所以h(x(>h(0(=0,所以g(x(在(0,+∞(上單調(diào)遞增,所以a≤1 2(2024·河南·模擬預測)已知函數(shù)f(x(=alnx+x-1(1)討論f(x(的單調(diào)性;f(x(≥-2lnx+(lnx(2,求a的取值范圍.(2)[-e,+∞(當a≥0時,f(x(>0,所以f(x(在(0,+∞(上單調(diào)遞增;所以f(x(在(0,-a(上單調(diào)遞減,在(-a,+∞(上單調(diào)遞增.設h(x(=x-lnx-1(x>1(,由(1)可知,h(x(在(1,+∞(上單調(diào)遞增,所以h(x(>h(1(=0,則g(x(max=g(e(=-e,所以a≥-e, (2)對任意x>0,f(x(>ax2+1,即ex-x-ax2-1>0,設g(x(=ex-x-ax2-1,x>0,g(x(=ex-1-ax,x>0, 4(2024·四川綿陽·模擬預測)已知函數(shù)f(x)=2sinx+ln(x+1)-ax.(2)a≥3則g(x(=-2sinx-,≤0,g(x(在(0,單調(diào)遞減,即f(x(在(0,單調(diào)遞減,且f(0(=1>0,f=-2<0,∴?x0∴f(x(在(0,x0(單調(diào)遞增,(x0,單調(diào)遞減;∴f(x(在(0,有1個零點;f(x(≤0.∴此時f(x(在(0,+∞(單調(diào)遞減,∴此時f(x(≤f(0(=0.當a≤3時,f(0(=3-a>0,必存在x1∈(0,+∞(,使f(x(在(0,x1(單調(diào)遞增,那么?x∈(0,x1( (1)求曲線y=f(x(在點(1,f(1((處的切線方程;(2)當x≥1時,f(x(≤a(x-1(,求a的取值范圍.故切線方程為y-0=(x-1),即y=x-.f(x(≤a(x-1(等價于lnx≤a(x2-1(, 可得fI(x(==,所以fI(0(=-2,f(0(=1,所以曲線y=f(x(在點(0,f(0((處的切線方程為y-1=-2(x-0(,即y=-2x+1.x+x-1>e0+0-1=0.所以命題等價于a≥對x>0恒成立,x+2x2-2x-x2ex-x2=2xex+x2-2x-x2ex=-2x(1-ex(+x2(1-ex((ex+x-1(2(ex+x-1(2(ex+x-1(2=(x2-2x((1-ex(=x(x-2((1-ex((ex+x-1(2(ex+x-1(2,所以h(x)max=h(2(=.. (x-x+1,fI(x)=ex-1,fI(1)=e-1,f(1)=e,x-x2(≥x-1恒成立.令g(x)=ex-x2,x-2x,φI(x)=ex-2(ln2)=2-2ln2>0.x-x>0,. (2)(-∞,1[【詳解】(1)由f(x(=ex-ax-2,得f/(x(=ex-a,x(>0,則f(x(單調(diào)遞增,f(x(不存,f(x(單調(diào)遞減;,f(x(單調(diào)遞增,所以x=lna是f(x(的極小值點,(2)由f(x(>x-sinx-cosx在x∈(0,+∞(時恒成立,x+cosx+sinx-(a+1(x-2>0在x∈(x-sinx+cosx-(a+1(,令m(x(=gI(x(=ex-sinx+cosx-(a+1(,則mI(x(=ex-cosx-sinx,令n(x(=mI(x(=ex-cosx-sinx,則nI(x(=ex+sinx-cosx,所以x∈(0,+∞(時,nI(x(>0,則n(x(即mI(x(單調(diào)遞增,所以mI(x(>mI(0(=0,則m(x(即gI(x(單調(diào)遞增,所以gI(x(>gI(0(=1-a,所以g(x(>g(0(=0,所以f(x(>x-sinx-cosx在x∈(0,+∞(時恒成立,-a<0,I[ln(a+3([=a+3-sin[ln(a+3([+cos[ln(a+3([-(a+1(故在區(qū)間(0,ln(a+3((上函數(shù)gI(x(存在零點x0,即gI(x0(=0,故函數(shù)g(x(在區(qū)間(0,x0(上單調(diào)遞減,進行分類討論. 【答案】(1)f(x(在(-∞,+∞(上單調(diào)遞增.(2)將問題轉(zhuǎn)化為?x∈[0,+∞(,ex-x2-2ax-cosx≥0恒成立,構(gòu)造函數(shù)F(x(=ex-x2-2ax-cosx,x∈令m(x(=ex-2x,所以mI(x(=ex-2,所以m(x(在(-∞,ln2(上單調(diào)遞減,在(ln2,+∞(上單調(diào)遞增,所以m(x(≥m(ln2(=2-2ln2>0,即fI(x(>0,從而函數(shù)f(x(在(-∞,+∞(上單調(diào)遞增.(2)因為f(x(=ex-ax2+2,所以fI(x(=ex-2ax,又g(x(=x2+cosx,?x∈[0,+∞(,fI(x(≥g(x(恒成立等價于?x∈[0,+∞(,ex-x2-2ax-cosx≥0恒成立.記F(x(=ex-x2-2ax-cosx,x∈[0,+∞(,所以FI(x(=ex-2x-2a+sinx.令h(x(=ex-2x-2a+sinx,x∈[0,+∞(,所以hI(x(=ex+cosx-2.設r(x(=ex+cosx-2,x∈[0,+∞(,從而rI(x(=ex-sinx>0,故有r(x(≥r(0(=0,則h(x(在[0,+∞(上單調(diào)遞增,即FI(x(在[0,+∞(上單調(diào)遞增,故有FI(x(≥FI(0(=1-2a.I(x(≥FI(0(=1-2a≥0,此時F(x(單調(diào)遞增,從而F(x(≥F(0(=0,滿足題意.I(0(=1-2a<0,且FI(x(在(0,+∞(上單調(diào)遞增,x→+∞,FI(x(→+∞,∈(0,+∞(滿足FI(x0(=0,,FI(x(<0,則F(x(在(0,x0(上單調(diào)遞減,時,F(xiàn)(x(≤F(0(=0,不滿足題意. (2)(-∞,-1].(2)函數(shù)f(x)=+x-1,f(x)≥a+1?a(lnx-x)≥2x-x2,x∈[1,+∞),所以a≤-1,即實數(shù)a的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上班通知書(10篇)
- 發(fā)工資合同范本
- 科技助力下的老年人健康飲食推廣計劃
- 考慮沖刷條件下的黃河灘區(qū)透水樁壩水平承載特性研究
- 基于IL-25信號通路研究益氣溫陽護衛(wèi)湯治療支氣管哮喘的作用機制
- 科技助力下的綠色辦公實踐探索
- 電子商務物流配送中的智能倉儲解決方案
- 社交平臺對多肉植物銷售的影響力分析
- J公司H項目施工成本控制改進研究
- 健身雇傭合同范本
- 高中英語3500詞(亂序版)
- 鋼結(jié)構(gòu)吊裝技術(shù)交底
- 2024年廣東省廣州市黃埔區(qū)黃埔街道辦事處招聘4人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 數(shù)學家祖沖之課件
- 小學二年級語文下冊-【口語交際:注意說話的語氣 名師教學設計】
- 建筑基坑工程監(jiān)測技術(shù)標準
- 【2024高考萬能答題模版】數(shù)學答題模板1
- DG-TJ 08-2242-2023 民用建筑外窗應用技術(shù)標準
- 2024年俄羅斯高空作業(yè)平臺車行業(yè)應用與市場潛力評估
- 【中考真題】2024年河南省普通高中招生考試歷史試卷(含答案)
- 2024版年度經(jīng)濟法基礎完整全套課件
評論
0/150
提交評論