版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省株洲市攸縣重點名校2024屆中考沖刺卷數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.32.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元3.計算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.4.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1395.一個六邊形的六個內(nèi)角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.166.下面幾何的主視圖是()A. B. C. D.7.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個8.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°9.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣310.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.12.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設(shè)銀杏樹的單價為x元,可列方程為______.13.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.14.某商品原售價為100元,經(jīng)連續(xù)兩次漲價后售價為121元,設(shè)平均每次漲價的百分率為x,則依題意所列的方程是_____________.15.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°16.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.17.墊球是排球隊常規(guī)訓練的重要項目之一.如圖所示的數(shù)據(jù)是運動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運動員張華測試成績的眾數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).19.(5分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.20.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.21.(10分)如圖,在平面直角坐標系中,反比例函數(shù)的圖像與邊長是6的正方形的兩邊,分別相交于,兩點.若點是邊的中點,求反比例函數(shù)的解析式和點的坐標;若,求直線的解析式及的面積22.(10分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.23.(12分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.24.(14分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.2、A【解析】
設(shè)這種商品每件進價為x元,根據(jù)題中的等量關(guān)系列方程求解.【詳解】設(shè)這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關(guān)鍵是確定未知數(shù),根據(jù)題中的等量關(guān)系列出正確的方程.3、A【解析】
可設(shè)其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設(shè)S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設(shè)出和為S,并求出2S進行做差求解是解題關(guān)鍵.4、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.5、C【解析】
解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.6、B【解析】
主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.7、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.8、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).9、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標為10、C【解析】
根據(jù)定義運算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側(cè)的部分;當x<0時,圖象是y=對稱軸左側(cè)的部分,所以C選項是正確的.【點睛】本題考查了二次函數(shù)的圖象,利用定義運算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2.【解析】
由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設(shè)CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),勾股定理的應用,解題關(guān)鍵是熟記性質(zhì)與定理并準確識圖.12、【解析】
根據(jù)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設(shè)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)題意,得:1.故答案為:1.【點睛】本題考查了由實際問題抽象出分式方程,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.13、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設(shè)這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.14、100(1+x)2=121【解析】
根據(jù)題意給出的等量關(guān)系即可求出答案.【詳解】由題意可知:100(1+x)2=121故答案為:100(1+x)2=121【點睛】本題考查一元二次方程的應用,解題的關(guān)鍵是正確找出等量關(guān)系,本題屬于基礎(chǔ)題型.15、B.【解析】試題分析:根據(jù)AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質(zhì)、切線的性質(zhì).16、【解析】
利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應用求概率的公式.17、1【解析】
根據(jù)眾數(shù)定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)可得答案.【詳解】運動員張華測試成績的眾數(shù)是1.故答案為1.【點睛】本題主要考查了眾數(shù),關(guān)鍵是掌握眾數(shù)定義.三、解答題(共7小題,滿分69分)18、(1)35%,126;(2)見解析;(3)1344人【解析】
(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.【詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機時間在2小時以上(不含2小時)的人數(shù)約有1344人.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,準確識圖,從中找到必要的信息進行解題是關(guān)鍵.19、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據(jù)題意和矩形的周長公式列出代數(shù)式解答即可.(2)根據(jù)題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數(shù)式問題、平方差公式等,解題的關(guān)鍵是根據(jù)題意和矩形的性質(zhì)列出代數(shù)式解答.20、(1)見解析;(2).【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設(shè)OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【點睛】本題考查了切線的判定和性質(zhì),平行四邊形的性質(zhì),垂徑定理,射影定理,勾股定理,三角函數(shù)的定義,正確的作出輔助線是解題的關(guān)鍵.21、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】
(1)求出點M坐標,利用待定系數(shù)法即可求得反比例函數(shù)的解析式,把N點的縱坐標代入解析式即可求得橫坐標;
(2)根據(jù)M點的坐標與反比例函數(shù)的解析式,求得N點的坐標,利用待定系數(shù)法求得直線MN的解析式,根據(jù)△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【詳解】解:(1)∵點M是AB邊的中點,∴M(6,3).∵反比例函數(shù)y=經(jīng)過點M,∴3=.∴k=1.∴反比例函數(shù)的解析式為y=.當y=6時,x=3,∴N(3,6).(2)由題意,知M(6,2),N(2,6).設(shè)直線MN的解析式為y=ax+b,則,解得,∴直線MN的解析式為y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義,待定系數(shù)法求一次函數(shù)的解析式和反比例函數(shù)的解析式,正方形的性質(zhì),求得M、N點的坐標是解題的關(guān)鍵.22、吉普車的速度為30千米/時.【解析】
先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學生對分式方程實際應用的綜合運用.為中考常見題型,要求學生牢固掌握.注意檢驗.23、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年湘教新版九年級物理上冊階段測試試卷含答案
- 2025年蘇科新版一年級數(shù)學下冊月考試卷含答案
- 2025年人教五四新版九年級科學下冊月考試卷含答案
- 2025年華東師大版三年級語文下冊階段測試試卷
- 2025版陶瓷杯生產(chǎn)基地采購合同3篇
- 2025年人教版七年級化學上冊階段測試試卷含答案
- 二零二五年度荒溝土地整治承包經(jīng)營權(quán)轉(zhuǎn)包管理合同3篇
- 專項貨物配送合作合同(2024版)
- 二零二五年急救藥品生產(chǎn)許可證申請與審批合同3篇
- 2024版對公司有利的勞動合同
- 2025年中國華能集團有限公司招聘筆試參考題庫含答案解析
- 光伏安裝施工合同范本
- 北京郵電大學《數(shù)學物理方法概論》2023-2024學年第一學期期末試卷
- 2024-2025學年無錫市數(shù)學三年級第一學期期末質(zhì)量檢測試題含解析
- 2024年簡易別墅買賣合同樣本
- 2025中考數(shù)學考點題型歸納(幾何證明大題)
- 人教版(2024)數(shù)學七年級上冊期末測試卷(含答案)
- 2024年學校意識形態(tài)工作總結(jié)(3篇)
- 《人工智能基礎(chǔ)》課件-AI的前世今生:她從哪里來
- ISO28000:2022供應鏈安全管理體系
- 海南作協(xié)入會申請表
評論
0/150
提交評論