浙江省溫州市各校2024屆中考數(shù)學猜題卷含解析_第1頁
浙江省溫州市各校2024屆中考數(shù)學猜題卷含解析_第2頁
浙江省溫州市各校2024屆中考數(shù)學猜題卷含解析_第3頁
浙江省溫州市各校2024屆中考數(shù)學猜題卷含解析_第4頁
浙江省溫州市各校2024屆中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市各校2024屆中考數(shù)學猜題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-12.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h3.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大4.某種電子元件的面積大約為0.00000069平方毫米,將0.00000069這個數(shù)用科學記數(shù)法表示正確的是()A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×1075.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°6.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米7.下列等式正確的是()A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1C.a(chǎn)3+a3=a6 D.(ab)2=a8.據(jù)國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10149.將5570000用科學記數(shù)法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×10810.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|11.下列運算,結果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+412.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在直角三角形ABC中,∠C=90°,已知sinA=3514.若x=-1,則x2+2x+1=__________.15.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.16.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.17.如圖,已知AB∥CD,=____________18.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm2三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關系式;根據(jù)工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?20.(6分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.21.(6分)先化簡,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根22.(8分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)査結果繪制了如下尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:這次接受調(diào)查的市民總人數(shù)是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數(shù)是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總人數(shù).23.(8分)解不等式組:.24.(10分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).(1)求證:方程有兩個不相等的實數(shù)根;(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.25.(10分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).26.(12分)如圖二次函數(shù)的圖象與軸交于點和兩點,與軸交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象經(jīng)過、求二次函數(shù)的解析式;寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;若直線與軸的交點為點,連結、,求的面積;27.(12分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關鍵是熟記分式方程無解的條件.2、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B3、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.4、B【解析】試題解析:0.00000069=6.9×10-7,故選B.點睛:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).6、A【解析】

試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!7、B【解析】

(1)根據(jù)完全平方公式進行解答;(2)根據(jù)合并同類項進行解答;(3)根據(jù)合并同類項進行解答;(4)根據(jù)冪的乘方進行解答.【詳解】解:A、(a+b)2=a2+2ab+b2,故此選項錯誤;B、3n+3n+3n=3n+1,正確;C、a3+a3=2a3,故此選項錯誤;D、(ab)2=a2b,故此選項錯誤;故選B.【點睛】本題考查整數(shù)指數(shù)冪和整式的運算,解題關鍵是掌握各自性質(zhì).8、B【解析】

由科學記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數(shù)法表示為8.27122×1013,故選B.【點睛】科學記數(shù)法表示數(shù)的標準形式為(<10且n為整數(shù)).9、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確10、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.11、B【解析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.12、C【解析】

本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數(shù)的關系.14、2【解析】

先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點睛】本題考查了代數(shù)式求值,涉及了因式分解,二次根式的性質(zhì)等,熟練掌握相關知識是解題的關鍵.15、±1【解析】

先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.16、50【解析】試題分析:連結EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內(nèi)接四邊形的性質(zhì).17、85°.【解析】如圖,過F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°?∠ABF+∠C=180°?120°+25°=85°故答案為85°.18、60π【解析】

圓錐的側面積=π×底面半徑×母線長,把相應數(shù)值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)20分鐘.【解析】

(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數(shù)關系式為y=9x+15(0≤x≤5).停止加熱時,設y=(k≠0),由題意得60=,解得k=300,則停止加熱進行操作時y與x的函數(shù)關系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經(jīng)歷了20分鐘.答:從開始加熱到停止操作,共經(jīng)歷了20分鐘.20、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數(shù)k的值為﹣2.考點:一元二次方程根與系數(shù)的關系,根的判別式.21、2m2+2m+5;1;【解析】

先利用完全平方公式化簡,再去括號合并得到最簡結果,把已知等式變形后代入值計算即可.【詳解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【點睛】此題考查了整式的化簡求值以及方程的解,利用整體代換思想可使運算更簡單.22、(1)1000;(2)54°;(3)見解析;(4)32萬人【解析】

根據(jù)“每項人數(shù)=總人數(shù)×該項所占百分比”,“所占角度=360度×該項所占百分比”來列出式子,即可解出答案.【詳解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案為:1000人;

54°

;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(萬人)答:總人數(shù)為52.8萬人.【點睛】本題考查獲取圖表信息的能力,能夠根據(jù)圖表找到必要條件是解題關鍵.23、﹣4≤x<1【解析】

先求出各不等式的【詳解】解不等式x﹣1<2,得:x<1,解不等式2x+1≥x﹣1,得:x≥﹣4,則不等式組的解集為﹣4≤x<1.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.24、(3)證明見解析(3)3或﹣3【解析】

(3)根據(jù)一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據(jù)非負數(shù)的性質(zhì),即k的取值得到△>2,則可根據(jù)判別式的意義得到結論;(3)根據(jù)求根公式求出方程的根,方程的兩個實數(shù)根都是整數(shù),求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數(shù),∴(3k﹣3)3>2,即△>2.∴方程有兩個不相等的實數(shù)根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個實數(shù)根都是整數(shù),且k為整數(shù),∴k=3或﹣3.【點睛】本題主要考查了根的判別式的知識,熟知一元二次方程的根與△的關系是解答此題的關鍵.25、(1)4,;(2)旋轉后的正方形與原正方形的重疊部分的面積為;(3).【解析】

(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;

(2)根據(jù)旋轉的性質(zhì)可得OA′的長,從而得出A′C,A′E,再求出面積即可;

(3)根據(jù)P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點A的坐標為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉,∴點落在軸上.∴.∴點的坐標為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉后的正方形與原正方形的重疊部分的面積為.(3)設t秒后兩點相遇,3t=16,∴t=①當點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當點P在OA上,點Q在BC上時如圖2,當OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當點P、Q在AC上時,不能為等腰三角形綜上所述,當時是等腰三角形【點睛】此題考查了正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論