高三數學專題復習知識點解讀2023_第1頁
高三數學專題復習知識點解讀2023_第2頁
高三數學專題復習知識點解讀2023_第3頁
高三數學專題復習知識點解讀2023_第4頁
高三數學專題復習知識點解讀2023_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高三數學專題復習知識點解讀2023高三數學專題復習知識點解讀2023高三數學專題復習知識點11.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.2.在應用條件時,易A忽略是空集的情況3.你會用補集的思想解決有關問題嗎?4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別.6.求解與函數有關的問題易忽略定義域優(yōu)先的原則.7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.9.原函數在區(qū)間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法11.求函數單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.12.求函數的值域必須先求函數的定義域。13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?(真數大于零,底數大于零且不等于1)字母底數還需討論15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍?!皩嵪禂狄辉畏匠逃袑崝到狻鞭D化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.19.絕對值不等式的解法及其幾何意義是什么?20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)33.反正弦、反余弦、反正切函數的取值范圍分別是34.你還記得某些特殊角的三角函數值嗎?35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?36.函數的圖象的平移,方程的平移以及點的平移公式易混:(1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.(3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時易忘比值還等于2R。高三數學專題復習知識點2(1)先看“充分條件和必要條件”當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的必要條件呢?事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。(2)再看“充要條件”若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q回憶一下初中學過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B?!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。(3)定義與充要條件數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示?!俺湟獥l件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。高三數學專題復習知識點31.數列的定義按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.(2)在數列的定義中并沒有規(guī)定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.(5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區(qū)別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.2.數列的分類(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.3.數列的通項公式數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規(guī)律,多觀察分析,真正找到數列的內在規(guī)律,由數列前幾項寫出其通項公式,沒有通用的方法可循.再強調對于數列通項公式的理解注意以下幾點:(1)數列的通項公式實際上是一個以正整數集N_或它的有限子集{1,2,…,n}為定義域的函數的表達式.(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.(3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:(5)有些數列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數列通項公式并不.4.數列的圖象對于數列4,5,6,7,8,9,10每一項的序號與這一項有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論