浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江寧波南三縣重點達標(biāo)名校2024年中考數(shù)學(xué)適應(yīng)性模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.地球上的陸地面積約為149000000千米2,用科學(xué)記數(shù)法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千22.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.3.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.4.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(

)A.30°B.45°C.50°D.60°5.兩個有理數(shù)的和為零,則這兩個數(shù)一定是()A.都是零 B.至少有一個是零C.一個是正數(shù),一個是負數(shù) D.互為相反數(shù)6.設(shè)a,b是常數(shù),不等式的解集為,則關(guān)于x的不等式的解集是()A. B. C. D.7.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.8.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結(jié)論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB9.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的A. B. C. D.10.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知一次函數(shù)y=ax+b和反比例函數(shù)的圖象相交于A(﹣2,y1)、B(1,y2)兩點,則不等式ax+b<的解集為__________12.科技改變生活,手機導(dǎo)航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.13.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.14.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則15.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當(dāng)△EFC為直角三角形時BE=_____.16.如圖,已知在平行四邊形ABCD中,E是邊AB的中點,F(xiàn)在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.17.如圖的三角形紙片中,,沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,則的周長為__________.三、解答題(共7小題,滿分69分)18.(10分)小明有兩雙不同的運動鞋放在一起,上學(xué)時間到了,他準(zhǔn)備穿鞋上學(xué).他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.19.(5分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)査結(jié)果繪制了如下尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:這次接受調(diào)查的市民總?cè)藬?shù)是_______人;扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).20.(8分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)21.(10分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.22.(10分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.23.(12分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.24.(14分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負數(shù).解:149

000

000=1.49×2千米1.故選C.把一個數(shù)寫成a×10n的形式,叫做科學(xué)記數(shù)法,其中1≤|a|<10,n為整數(shù).因此不能寫成149×106而應(yīng)寫成1.49×2.2、A【解析】

由等腰三角形三線合一的性質(zhì)得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據(jù)正弦函數(shù)的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握等腰三角形三線合一的性質(zhì)和平行線的性質(zhì)及直角三角形的性質(zhì)等知識點.3、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.4、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.5、D【解析】解:互為相反數(shù)的兩個有理數(shù)的和為零,故選D.A、C不全面.B、不正確.6、C【解析】

根據(jù)不等式的解集為x<即可判斷a,b的符號,則根據(jù)a,b的符號,即可解不等式bx-a<0【詳解】解不等式,移項得:∵解集為x<∴,且a<0∴b=-5a>0,解不等式,移項得:bx>a兩邊同時除以b得:x>,即x>-故選C【點睛】此題考查解一元一次不等式,掌握運算法則是解題關(guān)鍵7、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關(guān)鍵.8、A【解析】

根據(jù)三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.9、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.10、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、﹣2<x<0或x>1【解析】

根據(jù)一次函數(shù)圖象與反比例函數(shù)圖象的上下位置關(guān)系結(jié)合交點坐標(biāo),即可得出不等式的解集.【詳解】觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)﹣2<x<0或x>1時,一次函數(shù)圖象在反比例函數(shù)圖象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.【點睛】本題主要考查一次函數(shù)圖象與反比例函數(shù)圖象,數(shù)形結(jié)合思想是關(guān)鍵.12、3【解析】

作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.13、1【解析】分析:根據(jù)題意得出點B的坐標(biāo),根據(jù)面積平分得出點D的坐標(biāo),利用三角形相似可得點A的坐標(biāo),從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標(biāo)為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標(biāo)1.5,∴點D的坐標(biāo)為,∵DE:AB=1:1,∴點A的坐標(biāo)為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應(yīng)用,屬于中等難度的題型.得出點D的坐標(biāo)是解決這個問題的關(guān)鍵.14、6【解析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.15、3或1【解析】

分當(dāng)點F落在矩形內(nèi)部時和當(dāng)點F落在AD邊上時兩種情況求BE得長即可.【詳解】當(dāng)△CEF為直角三角形時,有兩種情況:當(dāng)點F落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識點,解題時要注意分情況討論.16、【解析】

根據(jù),只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.【點睛】本題考查的知識點是平面向量,平行四邊形的性質(zhì),解題關(guān)鍵是表達出、.17、【解析】

由折疊的性質(zhì),可知:BE=BC,DE=DC,通過等量代換,即可得到答案.【詳解】∵沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,∴BE=BC,DE=DC,∴的周長=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【點睛】本題主要考查折疊的性質(zhì),根據(jù)三角形的周長定義,進行等量代換是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)12;(2)1【解析】

(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)1000;(2)54°;(3)見解析;(4)32萬人【解析】

根據(jù)“每項人數(shù)=總?cè)藬?shù)×該項所占百分比”,“所占角度=360度×該項所占百分比”來列出式子,即可解出答案.【詳解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案為:1000人;

54°

;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(萬人)答:總?cè)藬?shù)為52.8萬人.【點睛】本題考查獲取圖表信息的能力,能夠根據(jù)圖表找到必要條件是解題關(guān)鍵.20、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.21、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.22、(1)見解析;(1)1【解析】

(1)根據(jù)角平分線的作圖可得;

(1)由等腰三角形的三線合一,結(jié)合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【點睛】本題主要考查作圖-基本作圖和等腰三角形的性質(zhì)、中位線定理,熟練掌握等腰三角形的性質(zhì)、中位線定理是解題的關(guān)鍵.23、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據(jù)AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結(jié)論;(3)當(dāng)AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論