2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題_第1頁(yè)
2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題_第2頁(yè)
2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題_第3頁(yè)
2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題_第4頁(yè)
2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆福建省建甌市第二中學(xué)高三第二次(5月)檢查數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.142.在鈍角中,角所對(duì)的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.3.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.4.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)5.如圖,長(zhǎng)方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.6.已知,則的值等于()A. B. C. D.7.已知三棱錐且平面,其外接球體積為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.79.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.10.如圖,在等腰梯形中,,,,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是()A. B.C. D.11.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.412.已知集合,集合,則().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對(duì)邊分別為,已知,則的面積為___________.14.已知雙曲線的一條漸近線為,且經(jīng)過(guò)拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為______.15.已知向量,,,則__________.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達(dá)式,并證明你的結(jié)論.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時(shí),求與的交點(diǎn)的極坐標(biāo);(2)直線與曲線交于,兩點(diǎn),線段中點(diǎn)為,求的值.19.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過(guò)橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.21.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.22.(10分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.2、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗裕?,,時(shí)故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.3、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過(guò)程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問(wèn)題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.4、D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.5、D【解析】

根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長(zhǎng)方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【點(diǎn)睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.6、A【解析】

由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點(diǎn)睛】本題考查了學(xué)生對(duì)二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡(jiǎn)單題7、A【解析】

由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.8、C【解析】

根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過(guò)程.9、C【解析】

由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.10、A【解析】

由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長(zhǎng)為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.11、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。12、A【解析】

算出集合A、B及,再求補(bǔ)集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點(diǎn)睛】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由余弦定理先算出c,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點(diǎn)睛】本題考查利用余弦定理求解三角形的面積,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.14、【解析】

設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過(guò)拋物線焦點(diǎn),能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過(guò)拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.【點(diǎn)睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題.15、3【解析】

由題意得,,再代入中,計(jì)算即可得答案.【詳解】由題意可得,,∴,解得,∴.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意向量數(shù)量積公式的運(yùn)用.16、1【解析】

由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、,;,證明見解析【解析】

對(duì)函數(shù)進(jìn)行求導(dǎo),并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對(duì)函數(shù)再進(jìn)行求導(dǎo)并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學(xué)歸納法證明:①當(dāng)時(shí),成立,②假設(shè)時(shí),猜想成立即當(dāng)時(shí),當(dāng)時(shí),猜想成立由①②對(duì)成立【點(diǎn)睛】本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.18、(1),;(2)【解析】

(1)依題意可知,直線的極坐標(biāo)方程為(),再對(duì)分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長(zhǎng)即可得到答案.【詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時(shí),聯(lián)立解得交點(diǎn),當(dāng)時(shí),經(jīng)檢驗(yàn)滿足兩方程,(易漏解之處忽略的情況)當(dāng)時(shí),無(wú)交點(diǎn);綜上,曲線與直線的點(diǎn)極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點(diǎn)睛】本題考查直線與曲線交點(diǎn)的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長(zhǎng),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力.19、(1);(2)證明見解析【解析】

(1)利用零點(diǎn)分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對(duì)值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時(shí),則所以當(dāng)時(shí),則當(dāng)時(shí),則綜上所述:(2)由當(dāng)且僅當(dāng)時(shí)取等號(hào)所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號(hào)由故,又則【點(diǎn)睛】本題考查使用零點(diǎn)分段法求解絕對(duì)值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.20、(1)(2)【解析】

(1)根據(jù)拋物線的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.【點(diǎn)睛】本小題主要考查拋物線的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.21、(1);(2)【解析】

(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因?yàn)榍€和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論