高考數(shù)學(xué)一輪復(fù)習(xí)第2章基本初等函數(shù)導(dǎo)數(shù)及其應(yīng)用第1講函數(shù)及其表示知能訓(xùn)練輕松闖關(guān)文北師大版_第1頁
高考數(shù)學(xué)一輪復(fù)習(xí)第2章基本初等函數(shù)導(dǎo)數(shù)及其應(yīng)用第1講函數(shù)及其表示知能訓(xùn)練輕松闖關(guān)文北師大版_第2頁
高考數(shù)學(xué)一輪復(fù)習(xí)第2章基本初等函數(shù)導(dǎo)數(shù)及其應(yīng)用第1講函數(shù)及其表示知能訓(xùn)練輕松闖關(guān)文北師大版_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGE第1講函數(shù)及其表示1.已知集合A=[0,8],集合B=[0,4],則下列對應(yīng)關(guān)系中,不能看作從A到B的映射的是()A.f:x→y=eq\f(1,8)x B.f:x→y=eq\f(1,4)xC.f:x→y=eq\f(1,2)x D.f:x→y=x解析:選D.按照對應(yīng)關(guān)系f:x→y=x,對A中某些元素(如x=8),B中不存在元素與之對應(yīng).2.(2016·唐山統(tǒng)考)已知f(x)=x+eq\f(1,x)-1,f(a)=2,則f(-a)=()A.-4 B.-2C.-1 D.-3解析:選A.因?yàn)閒(x)=x+eq\f(1,x)-1,所以f(a)=a+eq\f(1,a)-1=2,所以a+eq\f(1,a)=3,所以f(-a)=-a-eq\f(1,a)-1=-eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,a)))-1=-3-1=-4,故選A.3.下列函數(shù)中,不滿足f(2x)=2f(xA.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x解析:選C.將f(2x)表示出來,看與2f(x對于A,f(2x)=|2x|=2|x|=2f(x對于B,f(2x)=2x-|2x|=2(x-|x|)=2f(x對于C,f(2x)=2x+1≠2f(x對于D,f(2x)=-2x=2f(x),所以只有C不滿足f(2x)=2f(x),4.若二次函數(shù)g(x)滿足g(1)=1,g(-1)=5,且圖像過原點(diǎn),則g(x)的解析式為()A.g(x)=2x2-3x B.g(x)=3x2-2xC.g(x)=3x2+2x D.g(x)=-3x2-2x解析:選B.用待定系數(shù)法,設(shè)g(x)=ax2+bx+c(a≠0),因?yàn)間(1)=1,g(-1)=5,且圖像過原點(diǎn),所以eq\b\lc\{(\a\vs4\al\co1(a+b+c=1,,a-b+c=5,,c=0,))解得eq\b\lc\{(\a\vs4\al\co1(a=3,,b=-2,,c=0,))所以g(x)=3x2-2x.5.(2016·河南省高考適應(yīng)性測試)已知函數(shù)f(x)=eq\b\lc\{(\a\vs4\al\co1(-ex+1,x≤0,,x-2,x>0,))若f(a)=-1,則實(shí)數(shù)a的值為()A.2 B.±1C.1 D.-1解析:選B.若a≤0,則-ea+1=-1,解得a=-1;若a>0,則a-2=-1,解得a=1.綜上所述,a=±1.6.已知a,b為兩個(gè)不相等的實(shí)數(shù),集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍為x,則a+bA.1 B.2C.3 D.4解析:選D.由已知可得M=N,故eq\b\lc\{(\a\vs4\al\co1(a2-4a=-2,b2-4b+1=-1))?eq\b\lc\{(\a\vs4\al\co1(a2-4a+2=0,,b2-4b+2=0,))所以a,b是方程x2-4x+2=0的兩根,故a+b=4.7.已知f(2x+1)=3x-4,f(a)=4,則a=________.解析:令2x+1=a,則x=eq\f(a-1,2),則f(2x+1)=3x-4可化為f(a)=eq\f(3(a-1),2)-4,因?yàn)閒(a)=4,所以eq\f(3(a-1),2)-4=4,解得a=eq\f(19,3).答案:eq\f(19,3)8.設(shè)函數(shù)f(x)滿足f(x)=1+feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))log2x,則f(2)=________.解析:由已知得feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=1-feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))·log22,則feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=eq\f(1,2),則f(x)=1+eq\f(1,2)log2x,故f(2)=1+eq\f(1,2)log22=eq\f(3,2).答案:eq\f(3,2)9.若函數(shù)f(x)在閉區(qū)間[-1,2]上的圖像如圖所示,則此函數(shù)的解析式為________.解析:由題圖可知,當(dāng)-1≤x<0時(shí),f(x)=x+1;當(dāng)0≤x≤2時(shí),f(x)=-eq\f(1,2)x,所以f(x)=eq\b\lc\{(\a\vs4\al\co1(x+1,-1≤x<0,,-\f(1,2)x,0≤x≤2.))答案:f(x)=eq\b\lc\{(\a\vs4\al\co1(x+1,-1≤x<0,,-\f(1,2)x,0≤x≤2))10.設(shè)函數(shù)f(x)=eq\b\lc\{(\a\vs4\al\co1(x2+bx+c,x≤0,,2,x>0,))若f(-2)=f(0),f(-1)=-3,則方程f(x)=x的解集為________.解析:當(dāng)x≤0時(shí),f(x)=x2+bx+c,因?yàn)閒(-2)=f(0),f(-1)=-3,則eq\b\lc\{(\a\vs4\al\co1((-2)2-2b+c=c,,(-1)2-b+c=-3,))解得eq\b\lc\{(\a\vs4\al\co1(b=2,,c=-2,))故f(x)=eq\b\lc\{(\a\vs4\al\co1(x2+2x-2,x≤0,,2,x>0.))當(dāng)x≤0時(shí),由f(x)=x,得x2+2x-2=x,解得x=-2或x=1(1>0,舍去).當(dāng)x>0時(shí),由f(x)=x,得x=2.所以方程f(x)=x的解集為{-2,2}.答案:{-2,2}11.(2016·寶雞質(zhì)檢)已知f(x)=x2-1,g(x)=eq\b\lc\{(\a\vs4\al\co1(x-1,x>0,,2-x,x<0.))(1)求f(g(2))與g(f(2));(2)求f(g(x))與g(f(x))的表達(dá)式.解:(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2.(2)當(dāng)x>0時(shí),f(g(x))=f(x-1)=(x-1)2-1=x2-2x;當(dāng)x<0時(shí),f(g(x))=f(2-x)=(2-x)2-1=x2-4x+3.所以f(g(x))=eq\b\lc\{(\a\vs4\al\co1(x2-2x,x>0,,x2-4x+3,x<0.))同理可得g(f(x))=eq\b\lc\{(\a\vs4\al\co1(x2-2,x<-1或x>1,,3-x2,-1<x<1.))12.設(shè)函數(shù)f(x)=eq\b\lc\{(\a\vs4\al\co1(ax+b,x<0,,2x,x≥0,))且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式;(2)畫出f(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論