新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第51講 二項(xiàng)式定理(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第51講 二項(xiàng)式定理(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第51講 二項(xiàng)式定理(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第51講 二項(xiàng)式定理(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第51講 二項(xiàng)式定理(含解析)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第51講二項(xiàng)式定理(精講)題型目錄一覽①二項(xiàng)展開式中的特定項(xiàng)問題②二項(xiàng)式系數(shù)問題③二項(xiàng)展開式中各項(xiàng)系數(shù)的和問題④三項(xiàng)展開式的問題⑤兩個(gè)二項(xiàng)式乘積展開式的系數(shù)⑥賦值法一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、二項(xiàng)式展開式的特定項(xiàng)、特定項(xiàng)的系數(shù)問題1.二項(xiàng)式定理一般地,對(duì)于任意正整數(shù),都有:SKIPIF1<0,這個(gè)公式所表示的定理叫做二項(xiàng)式定理,等號(hào)右邊的多項(xiàng)式叫做的二項(xiàng)展開式.式中的SKIPIF1<0做二項(xiàng)展開式的通項(xiàng),用SKIPIF1<0表示,即通項(xiàng)為展開式的第SKIPIF1<0項(xiàng):SKIPIF1<0,其中的系數(shù)SKIPIF1<0(r=0,1,2,…,n)叫做二項(xiàng)式系數(shù),2.二項(xiàng)式SKIPIF1<0的展開式的特點(diǎn):①項(xiàng)數(shù):共有SKIPIF1<0項(xiàng),比二項(xiàng)式的次數(shù)大1;②二項(xiàng)式系數(shù):第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0,最大二項(xiàng)式系數(shù)項(xiàng)居中;③次數(shù):各項(xiàng)的次數(shù)都等于二項(xiàng)式的冪指數(shù)SKIPIF1<0.字母SKIPIF1<0降冪排列,次數(shù)由SKIPIF1<0到SKIPIF1<0;字母SKIPIF1<0升冪排列,次數(shù)從SKIPIF1<0到SKIPIF1<0,每一項(xiàng)中,SKIPIF1<0,SKIPIF1<0次數(shù)和均為SKIPIF1<0;④項(xiàng)的系數(shù):二項(xiàng)式系數(shù)依次是SKIPIF1<0,項(xiàng)的系數(shù)是SKIPIF1<0與SKIPIF1<0的系數(shù)(包括二項(xiàng)式系數(shù)).3.兩個(gè)常用的二項(xiàng)展開式:①()②4.二項(xiàng)展開式的通項(xiàng)公式二項(xiàng)展開式的通項(xiàng):SKIPIF1<0SKIPIF1<0公式特點(diǎn):①它表示二項(xiàng)展開式的第SKIPIF1<0項(xiàng),該項(xiàng)的二項(xiàng)式系數(shù)是;②字母SKIPIF1<0的次數(shù)和組合數(shù)的上標(biāo)相同;③SKIPIF1<0與SKIPIF1<0的次數(shù)之和為SKIPIF1<0.注意:①二項(xiàng)式SKIPIF1<0的二項(xiàng)展開式的第r+1項(xiàng)和SKIPIF1<0的二項(xiàng)展開式的第r+1項(xiàng)是有區(qū)別的,應(yīng)用二項(xiàng)式定理時(shí),其中的SKIPIF1<0和SKIPIF1<0是不能隨便交換位置的.②通項(xiàng)是針對(duì)在SKIPIF1<0這個(gè)標(biāo)準(zhǔn)形式下而言的,如SKIPIF1<0的二項(xiàng)展開式的通項(xiàng)是(只需把SKIPIF1<0看成SKIPIF1<0代入二項(xiàng)式定理).二、二項(xiàng)式展開式中的最值問題1.二項(xiàng)式系數(shù)的性質(zhì)=1\*GB3①每一行兩端都是SKIPIF1<0,即SKIPIF1<0;其余每個(gè)數(shù)都等于它“肩上”兩個(gè)數(shù)的和,即SKIPIF1<0.=2\*GB3②對(duì)稱性每一行中,與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即SKIPIF1<0.=3\*GB3③二項(xiàng)式系數(shù)和令SKIPIF1<0,則二項(xiàng)式系數(shù)的和為SKIPIF1<0,變形式SKIPIF1<0.=4\*GB3④奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和在二項(xiàng)式定理中,令SKIPIF1<0,則SKIPIF1<0,從而得到:SKIPIF1<0.=5\*GB3⑤最大值:如果二項(xiàng)式的冪指數(shù)SKIPIF1<0是偶數(shù),則中間一項(xiàng)SKIPIF1<0的二項(xiàng)式系數(shù)SKIPIF1<0最大;如果二項(xiàng)式的冪指數(shù)SKIPIF1<0是奇數(shù),則中間兩項(xiàng)SKIPIF1<0,SKIPIF1<0的二項(xiàng)式系數(shù)SKIPIF1<0,SKIPIF1<0相等且最大.2.系數(shù)的最大項(xiàng)求SKIPIF1<0展開式中最大的項(xiàng),一般采用待定系數(shù)法.設(shè)展開式中各項(xiàng)系數(shù)分別為SKIPIF1<0,設(shè)第SKIPIF1<0項(xiàng)系數(shù)最大,應(yīng)有SKIPIF1<0,從而解出SKIPIF1<0來.三、二項(xiàng)式展開式中系數(shù)和有關(guān)問題常用賦值舉例:(1)設(shè),二項(xiàng)式定理是一個(gè)恒等式,即對(duì)SKIPIF1<0,SKIPIF1<0的一切值都成立,我們可以根據(jù)具體問題的需要靈活選取SKIPIF1<0,SKIPIF1<0的值.①令,可得:②令SKIPIF1<0,可得:,即:(假設(shè)為偶數(shù)),再結(jié)合①可得:.(2)若SKIPIF1<0,則①常數(shù)項(xiàng):令SKIPIF1<0,得SKIPIF1<0.②各項(xiàng)系數(shù)和:令SKIPIF1<0,得SKIPIF1<0.注意:常見的賦值為令SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,然后通過加減運(yùn)算即可得到相應(yīng)的結(jié)果.【常用結(jié)論】奇數(shù)項(xiàng)的系數(shù)和與偶數(shù)項(xiàng)的系數(shù)和①5當(dāng)SKIPIF1<0為偶數(shù)時(shí),奇數(shù)項(xiàng)的系數(shù)和為SKIPIF1<0;偶數(shù)項(xiàng)的系數(shù)和為SKIPIF1<0.(可簡記為:SKIPIF1<0為偶數(shù),奇數(shù)項(xiàng)的系數(shù)和用“中點(diǎn)公式”,奇偶交錯(cuò)搭配)②當(dāng)SKIPIF1<0為奇數(shù)時(shí),奇數(shù)項(xiàng)的系數(shù)和為SKIPIF1<0;偶數(shù)項(xiàng)的系數(shù)和為SKIPIF1<0.(可簡記為:SKIPIF1<0為奇數(shù),偶數(shù)項(xiàng)的系數(shù)和用“中點(diǎn)公式”,奇偶交錯(cuò)搭配)若SKIPIF1<0,同理可得.二、題型分類精講二、題型分類精講題型一二項(xiàng)展開式中的特定項(xiàng)問題策略方法形如(a+b)n的展開式問題二項(xiàng)展開式中的特定項(xiàng),是指展開式中的某一項(xiàng),如第n項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等,求解二項(xiàng)展開式中的特定項(xiàng)的關(guān)鍵點(diǎn)如下:①求通項(xiàng),利用(a+b)n的展開式的通項(xiàng)公式Tr+1=Ceq\o\al(r,n)an-rbr(r=0,1,2,…,n)求通項(xiàng).②列方程(組)或不等式(組),利用二項(xiàng)展開式的通項(xiàng)及特定項(xiàng)的特征,列出方程(組)或不等式(組).③求特定項(xiàng),先由方程(組)或不等式(組)求得相關(guān)參數(shù),再根據(jù)要求寫出特定項(xiàng).【典例1】(單選題)已知SKIPIF1<0的展開式中的常數(shù)項(xiàng)為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(

)A.2 B.-2 C.8 D.-8【答案】B【分析】直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】SKIPIF1<0展開式的通項(xiàng)為:SKIPIF1<0,取SKIPIF1<0得到常數(shù)項(xiàng)為SKIPIF1<0,解得SKIPIF1<0.故選:B【典例2】(單選題)二項(xiàng)式SKIPIF1<0展開式中含x項(xiàng)的系數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二項(xiàng)式定理寫出通項(xiàng)公式進(jìn)而求解.【詳解】二項(xiàng)式SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.則二項(xiàng)式SKIPIF1<0展開式中含x項(xiàng)的系數(shù)是SKIPIF1<0.故選:C【題型訓(xùn)練】一、單選題1.在SKIPIF1<0的展開式中,第四項(xiàng)為(

)A.160 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】直接根據(jù)二項(xiàng)展開式的通項(xiàng)求第四項(xiàng)即可.【詳解】在SKIPIF1<0的展開式中,第四項(xiàng)為SKIPIF1<0.故選:D.2.SKIPIF1<0展開式中的常數(shù)項(xiàng)為-160,則a=(

)A.-1 B.1 C.±1 D.2【答案】B【分析】寫出該二項(xiàng)展開式的通項(xiàng)公式,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】SKIPIF1<0的展開式通項(xiàng)為SKIPIF1<0,∴令SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0的展開式的常數(shù)項(xiàng)為SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0故選:B.3.SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為(

)A.40 B.SKIPIF1<0 C.80 D.SKIPIF1<0【答案】A【分析】首先寫出展開式的通項(xiàng),再代入計(jì)算可得;【詳解】SKIPIF1<0的展開式的通項(xiàng)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0,故選:A4.已知SKIPIF1<0的展開式中的常數(shù)項(xiàng)是672,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.1【答案】C【分析】寫出二項(xiàng)式通項(xiàng)SKIPIF1<0,整理后讓SKIPIF1<0的次數(shù)為SKIPIF1<0,得出SKIPIF1<0的值,再根據(jù)題意常數(shù)項(xiàng)的系數(shù)列出等式方程即可得出SKIPIF1<0的值.【詳解】展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,∴常數(shù)項(xiàng)是SKIPIF1<0,故SKIPIF1<0.故選:C5.二項(xiàng)式SKIPIF1<0的展開式中的常數(shù)項(xiàng)為(

)A.1792 B.-1792 C.1120 D.-1120【答案】C【分析】根據(jù)二項(xiàng)式定理展開式求解即可.【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以二項(xiàng)式展開式中的常數(shù)項(xiàng)為SKIPIF1<0.故選:C.6.若SKIPIF1<0展開式中含有常數(shù)項(xiàng),則n的最小值是(

)A.2 B.3 C.12 D.10【答案】A【分析】根據(jù)通項(xiàng)公式可求出結(jié)果.【詳解】SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0.故選:A7.SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是126,則SKIPIF1<0(

)A.2 B.4 C.1 D.3【答案】C【分析】求出展開式通項(xiàng),令SKIPIF1<0,解出SKIPIF1<0,即可得出答案.【詳解】展開式通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0的系數(shù)是126,所以SKIPIF1<0,解得SKIPIF1<0,故選:C.二、填空題8.二項(xiàng)式SKIPIF1<0的展開式中的常數(shù)項(xiàng)為.【答案】240【分析】利用二項(xiàng)式展開式的通項(xiàng)公式求解即得.【詳解】二項(xiàng)式SKIPIF1<0的展開式通項(xiàng)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以所求常數(shù)項(xiàng)為SKIPIF1<0.故答案為:2409.SKIPIF1<0的展開式的第8項(xiàng)的系數(shù)為(結(jié)果用數(shù)值表示).【答案】960【分析】根據(jù)二項(xiàng)式定理求出展開式中的第8項(xiàng),由此即可求解.【詳解】因?yàn)?,SKIPIF1<0展開式的第8項(xiàng)為SKIPIF1<0,所以,SKIPIF1<0的展開式的第8項(xiàng)的系數(shù)為960.故答案為:96010.二項(xiàng)式SKIPIF1<0的展開式中的常數(shù)項(xiàng)是.【答案】SKIPIF1<0【分析】利用二項(xiàng)式SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,即可求出結(jié)果.【詳解】二項(xiàng)式SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,由SKIPIF1<0,得到SKIPIF1<0,所以二項(xiàng)式SKIPIF1<0的展開式中的常數(shù)項(xiàng)是SKIPIF1<0,故答案為:SKIPIF1<0.11.若在SKIPIF1<0的展開式中,第4項(xiàng)是常數(shù)項(xiàng),則SKIPIF1<0.【答案】12【分析】寫出二項(xiàng)展開式的通項(xiàng)公式,再根據(jù)題意可得到SKIPIF1<0,即可求得答案【詳解】設(shè)展開式中第SKIPIF1<0項(xiàng)為SKIPIF1<0,則SKIPIF1<0,又展開式中第4項(xiàng)是常數(shù)項(xiàng),∴SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0故答案為:1212.設(shè)常數(shù)SKIPIF1<0,若SKIPIF1<0的二項(xiàng)展開式中SKIPIF1<0的系數(shù)為144,則SKIPIF1<0.【答案】2【分析】利用公式SKIPIF1<0,令SKIPIF1<0即可求值.【詳解】解:SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.故答案為:2.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用、組合數(shù)的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.13.已知SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】結(jié)合二項(xiàng)展開式通項(xiàng),根據(jù)SKIPIF1<0的系數(shù)可構(gòu)造方程求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0展開式通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.題型二二項(xiàng)式系數(shù)問題策略方法二項(xiàng)式系數(shù)和:(a+b)n的展開式中二項(xiàng)式系數(shù)的和為Ceq\o\al(0,n)+Ceq\o\al(1,n)+…+Ceq\o\al(n,n)=2n.【典例1】(單選題)SKIPIF1<0展開式中的各二項(xiàng)式系數(shù)之和為SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用二項(xiàng)式的系數(shù)和可得出關(guān)于SKIPIF1<0的等式,解之即可.【詳解】SKIPIF1<0展開式中的各二項(xiàng)式系數(shù)之和為SKIPIF1<0,解得SKIPIF1<0.故選:A.【典例2】(單選題).若SKIPIF1<0二項(xiàng)展開式中的各項(xiàng)的二項(xiàng)式系數(shù)只有第SKIPIF1<0項(xiàng)最大,則展開式的常數(shù)項(xiàng)的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)二項(xiàng)式系數(shù)的性質(zhì)得到SKIPIF1<0,再寫出展開式的通項(xiàng),即可求出常數(shù)項(xiàng).【詳解】因?yàn)槎?xiàng)展開式中的各項(xiàng)的二項(xiàng)式系數(shù)只有第SKIPIF1<0項(xiàng)最大,所以SKIPIF1<0,則SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即展開式中常數(shù)項(xiàng)為SKIPIF1<0.故選:D【題型訓(xùn)練】一、單選題1.SKIPIF1<0的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是(

)A.160 B.240 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二項(xiàng)式系數(shù)的性質(zhì)求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0的展開式中二項(xiàng)式系數(shù)最大為SKIPIF1<0,即展開式的第4項(xiàng),即SKIPIF1<0.故選:C.2.已知二項(xiàng)式SKIPIF1<0的展開式中僅有第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)最大,則SKIPIF1<0為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分析可知,二項(xiàng)式SKIPIF1<0的展開式共SKIPIF1<0項(xiàng),即可求出SKIPIF1<0的值.【詳解】因?yàn)槎?xiàng)式SKIPIF1<0的展開式中僅有第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)最大,則二項(xiàng)式SKIPIF1<0的展開式共SKIPIF1<0項(xiàng),即SKIPIF1<0,解得SKIPIF1<0.故選:A.3.已知SKIPIF1<0的展開式中第4項(xiàng)與第5項(xiàng)的二項(xiàng)式系數(shù)相等,則展開式中的SKIPIF1<0項(xiàng)的系數(shù)為(

)A.―4 B.84 C.―280 D.560【答案】B【分析】根據(jù)二項(xiàng)式系數(shù)的性質(zhì)求得SKIPIF1<0,再根據(jù)二項(xiàng)式展開的通項(xiàng)即可求得指定項(xiàng)的系數(shù).【詳解】因?yàn)镾KIPIF1<0的展開式中第4項(xiàng)與第5項(xiàng)的二項(xiàng)式系數(shù)相等,所以SKIPIF1<0.則SKIPIF1<0又因?yàn)镾KIPIF1<0的展開式的通項(xiàng)公式為SKIPIF1<0,令SKIPIF1<0,所以展開式中的SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0.故選:B.4.若SKIPIF1<0的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和為16,則SKIPIF1<0的展開式中的常數(shù)項(xiàng)為(

)A.6 B.8 C.28 D.56【答案】C【分析】根據(jù)SKIPIF1<0的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和求出n的值,從而寫出SKIPIF1<0的展開式的通項(xiàng)公式,再令x的指數(shù)為0,即可求解常數(shù)項(xiàng).【詳解】由SKIPIF1<0的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和為16,得SKIPIF1<0,所以SKIPIF1<0,則二項(xiàng)式SKIPIF1<0的展開式的通項(xiàng)公式為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的展開式中的常數(shù)項(xiàng)為28,故選:C.5.若SKIPIF1<0的展開式中第3項(xiàng)與第9項(xiàng)的系數(shù)相等,則展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為(

)A.第4項(xiàng) B.第5項(xiàng) C.第6項(xiàng) D.第7項(xiàng)【答案】C【分析】根據(jù)二項(xiàng)展開式可知SKIPIF1<0,計(jì)算出SKIPIF1<0,即可知二項(xiàng)式系數(shù)最大為SKIPIF1<0,即為第6項(xiàng).【詳解】由二項(xiàng)式定理可得第3項(xiàng)與第9項(xiàng)的系數(shù)分別為SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0,由二項(xiàng)式系數(shù)性質(zhì)可得SKIPIF1<0;因此展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為SKIPIF1<0,是第6項(xiàng).故選:C6.二項(xiàng)式SKIPIF1<0的展開式中,含SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為(

)A.84 B.56 C.35 D.21【答案】B【分析】易知展開式中,含SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0,再利用組合數(shù)的性質(zhì)求解.【詳解】解:因?yàn)槎?xiàng)式為SKIPIF1<0,所以其展開式中,含SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B二、填空題7.若SKIPIF1<0展開式的二項(xiàng)式系數(shù)和為64,則展開式中第三項(xiàng)的二項(xiàng)式系數(shù)為.【答案】SKIPIF1<0【分析】根據(jù)二項(xiàng)式系數(shù)和得到SKIPIF1<0,再計(jì)算第三項(xiàng)的二項(xiàng)式系數(shù)即可.【詳解】SKIPIF1<0展開式的二項(xiàng)式系數(shù)和為SKIPIF1<0,故SKIPIF1<0,展開式中第三項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.8.若SKIPIF1<0的展開式的奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為16,則展開式中SKIPIF1<0的系數(shù)為.【答案】SKIPIF1<0【分析】由展開式的奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為16可得SKIPIF1<0,則SKIPIF1<0展開式中第SKIPIF1<0項(xiàng)為SKIPIF1<0,令SKIPIF1<0可得答案.【詳解】因SKIPIF1<0的展開式的奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為16,則SKIPIF1<0.則SKIPIF1<0展開式中第SKIPIF1<0項(xiàng)為SKIPIF1<0.令SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<09.SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為.【答案】SKIPIF1<0【分析】寫出二項(xiàng)式展開式的通項(xiàng)公式,確定第五項(xiàng)中k的值,再求二項(xiàng)式系數(shù).【詳解】由題意知:通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)為第六項(xiàng),第六項(xiàng)的二項(xiàng)式系數(shù)為:SKIPIF1<0.故答案為:SKIPIF1<0.10.SKIPIF1<0的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是.【答案】SKIPIF1<0【分析】根據(jù)二項(xiàng)式系數(shù)的性質(zhì)即可知SKIPIF1<0最大,由二項(xiàng)式展開式的通項(xiàng)特征即可求解.【詳解】SKIPIF1<0的二項(xiàng)展開式有7項(xiàng),其二項(xiàng)式系數(shù)為SKIPIF1<0,由組合數(shù)的性質(zhì)可知SKIPIF1<0最大,故由二項(xiàng)式定理得二項(xiàng)式系數(shù)最大的一項(xiàng)是SKIPIF1<0.故答案為:SKIPIF1<011.已知SKIPIF1<0的二項(xiàng)展開式中第3項(xiàng)與第10項(xiàng)的二項(xiàng)式系數(shù)相等,則展開式中含SKIPIF1<0的系數(shù)為.【答案】SKIPIF1<0【分析】根據(jù)題意求得SKIPIF1<0,得到二項(xiàng)式為SKIPIF1<0,結(jié)合展開式的通項(xiàng),即可求解.【詳解】因?yàn)镾KIPIF1<0的二項(xiàng)展開式中第3項(xiàng)與第10項(xiàng)的二項(xiàng)式系數(shù)相等,可得SKIPIF1<0,即SKIPIF1<0,即二項(xiàng)式為SKIPIF1<0,其展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.12.已知SKIPIF1<0的展開式中第9項(xiàng)、第10項(xiàng)、第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,則SKIPIF1<0.【答案】14或23【分析】根據(jù)二項(xiàng)式系數(shù)的定義列出等式,解方程即可求得SKIPIF1<0或SKIPIF1<0.【詳解】由題意可得SKIPIF1<0成等差數(shù)列,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:14或23題型三二項(xiàng)展開式中各項(xiàng)系數(shù)的和問題策略方法常用賦值法,參考題型六【典例1】(單選題)已知SKIPIF1<0的展開式中所有項(xiàng)的系數(shù)之和為256,則SKIPIF1<0(

)A.3 B.4 C.6 D.8【答案】B【分析】令SKIPIF1<0,得到SKIPIF1<0,即可求解.【詳解】由二項(xiàng)式SKIPIF1<0的展開式中所有項(xiàng)的系數(shù)之和為256,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故選:B.【題型訓(xùn)練】一、單選題1.若SKIPIF1<0的展開式中常數(shù)項(xiàng)等于SKIPIF1<0,則其展開式各項(xiàng)系數(shù)之和為(

)A.1 B.32 C.0 D.64【答案】C【分析】寫出二項(xiàng)式的通項(xiàng),根據(jù)展開式中常數(shù)項(xiàng)等于SKIPIF1<0,則就出參數(shù)SKIPIF1<0,則賦值給SKIPIF1<0即可求出展開式各項(xiàng)系數(shù)之和.【詳解】因?yàn)镾KIPIF1<0的展開式中常數(shù)項(xiàng)等于SKIPIF1<0,所以由SKIPIF1<0,當(dāng)SKIPIF1<0,此時(shí)常數(shù)項(xiàng)為:SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,其展開式各項(xiàng)系數(shù)之和為0,故選:C.2.已知SKIPIF1<0的展開式中所有項(xiàng)的系數(shù)和為512,則展開式中的常數(shù)項(xiàng)為(

)A.-756 B.756 C.-2268 D.2268【答案】D【分析】利用賦值法結(jié)合條件可得SKIPIF1<0,然后利用展開式的通項(xiàng)根據(jù)結(jié)合條件即得.【詳解】令SKIPIF1<0可得展開式中所有項(xiàng)的系數(shù)和為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以展開式中的常數(shù)項(xiàng)為:SKIPIF1<0.故選:D.3.已知SKIPIF1<0的展開式中各項(xiàng)系數(shù)之和為0,則展開式中SKIPIF1<0的系數(shù)為(

)A.28 B.-28 C.45 D.-45【答案】A【分析】根據(jù)展開式各項(xiàng)系數(shù)之和可得SKIPIF1<0的值,從而可得展開式的通項(xiàng),進(jìn)而可得SKIPIF1<0的系數(shù).【詳解】SKIPIF1<0的展開式中各項(xiàng)系數(shù)之和為0所以令SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的通項(xiàng)為SKIPIF1<0所以展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:A.4.已知SKIPIF1<0的二項(xiàng)展開式中,第SKIPIF1<0項(xiàng)與第SKIPIF1<0項(xiàng)的系數(shù)相等,則所有項(xiàng)的系數(shù)之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用二項(xiàng)式定理求得SKIPIF1<0的展開通項(xiàng),從而利用SKIPIF1<0與SKIPIF1<0的系數(shù)相等得到關(guān)于SKIPIF1<0的方程,進(jìn)而求得SKIPIF1<0的值,由此得解.【詳解】因?yàn)镾KIPIF1<0的展開通項(xiàng)為SKIPIF1<0又因?yàn)榈赟KIPIF1<0項(xiàng)與第SKIPIF1<0項(xiàng)的系數(shù)相等,所以SKIPIF1<0,由二項(xiàng)式系數(shù)的性質(zhì)知SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的二項(xiàng)展開式中所有項(xiàng)的系數(shù)之和為SKIPIF1<0.故選:C.二、填空題5.已知SKIPIF1<0的展開式中,各項(xiàng)系數(shù)之和為SKIPIF1<0,則二項(xiàng)式系數(shù)之和為.【答案】SKIPIF1<0【分析】令SKIPIF1<0,結(jié)合二項(xiàng)式SKIPIF1<0各項(xiàng)系數(shù)和可求得SKIPIF1<0的值,進(jìn)而可求得該二項(xiàng)式系數(shù)之和.【詳解】因?yàn)镾KIPIF1<0的展開式中,各項(xiàng)系數(shù)之和為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,因此,二項(xiàng)式系數(shù)之和為SKIPIF1<0.故答案為:SKIPIF1<0.6.在SKIPIF1<0的展開式中,二項(xiàng)式系數(shù)和是16,則展開式中各項(xiàng)系數(shù)的和為.【答案】16【分析】由二項(xiàng)式系數(shù)的性質(zhì)可求SKIPIF1<0,再利用賦值法求各項(xiàng)系數(shù)和.【詳解】因?yàn)槎?xiàng)式SKIPIF1<0的展開式中,所有二項(xiàng)式系數(shù)的和是16,所以SKIPIF1<0,故SKIPIF1<0,取SKIPIF1<0可得二項(xiàng)式SKIPIF1<0的展開式中各項(xiàng)系數(shù)和為SKIPIF1<0,即16.故答案為:16.7.已知SKIPIF1<0的展開式中各項(xiàng)系數(shù)和為243,則展開式中常數(shù)項(xiàng)為.【答案】80【分析】根據(jù)題意,由各項(xiàng)系數(shù)之和可得SKIPIF1<0,再由二項(xiàng)式展開式的通項(xiàng)公式即可得到結(jié)果.【詳解】由題意,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0的展開式第SKIPIF1<0項(xiàng)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<08.已知SKIPIF1<0的二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開式中SKIPIF1<0的系數(shù)為.【答案】10【分析】由二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,求出SKIPIF1<0,用通項(xiàng)公式求解即可.【詳解】因?yàn)镾KIPIF1<0的二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,令SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.通項(xiàng)公式為:SKIPIF1<0,令SKIPIF1<0,得:SKIPIF1<0,所以SKIPIF1<0的系數(shù)為:SKIPIF1<0.故答案為:109.在SKIPIF1<0的展開式中,各項(xiàng)系數(shù)和與二項(xiàng)式系數(shù)和的比值為SKIPIF1<0,則二項(xiàng)展開式中的常數(shù)項(xiàng)為.【答案】240【分析】由已知求得SKIPIF1<0,再根據(jù)二項(xiàng)式通項(xiàng)公式的展開式求出常數(shù)項(xiàng)即可.【詳解】SKIPIF1<0的展開式中,二項(xiàng)式系數(shù)和為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0的展開式中,各項(xiàng)系數(shù)和為SKIPIF1<0,由題意可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故展開式的常數(shù)項(xiàng)為SKIPIF1<0,故答案為:24010.在SKIPIF1<0的二項(xiàng)式中,所有的二項(xiàng)式系數(shù)之和為64,則各項(xiàng)的系數(shù)的絕對(duì)值之和為.【答案】729【分析】根據(jù)二項(xiàng)式系數(shù)之和求出n的值,進(jìn)而設(shè)出各項(xiàng)的系數(shù),然后采用賦值法即可求得答案.【詳解】由題意SKIPIF1<0的二項(xiàng)式中,所有的二項(xiàng)式系數(shù)之和為64,即SKIPIF1<0,設(shè)SKIPIF1<0的各項(xiàng)的系數(shù)為SKIPIF1<0,則各項(xiàng)的系數(shù)的絕對(duì)值之和為SKIPIF1<0,即為SKIPIF1<0中各項(xiàng)的系數(shù)的和,令SKIPIF1<0,SKIPIF1<0,即各項(xiàng)的系數(shù)的絕對(duì)值之和為SKIPIF1<0,故答案為:729題型四三項(xiàng)展開式的問題策略方法求三項(xiàng)展開式中某些特定項(xiàng)的系數(shù)的方法(1)通過變形先把三項(xiàng)式轉(zhuǎn)化為二項(xiàng)式,再用二項(xiàng)式定理求解.(2)兩次利用二項(xiàng)式定理的通項(xiàng)公式求解.(3)由二項(xiàng)式定理的推證方法知,可用排列、組合的基本原理去求,即把三項(xiàng)式看作幾個(gè)因式之積,要得到特定項(xiàng)看有多少種方法從這幾個(gè)因式中取因式中的量.【典例1】(單選題)SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為(

)A.80 B.60 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由題得SKIPIF1<0,再利用二項(xiàng)式的通項(xiàng)即可得到答案.【詳解】SKIPIF1<0,則其展開式通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以SKIPIF1<0的系數(shù)為SKIPIF1<0,故選:D.【題型訓(xùn)練】一、單選題1.SKIPIF1<0的展開式共(

)A.10項(xiàng) B.15項(xiàng) C.20項(xiàng) D.21項(xiàng)【答案】B【分析】根據(jù)二項(xiàng)式定理的展開式項(xiàng)數(shù)即可得出結(jié)論.【詳解】∵SKIPIF1<0,由二項(xiàng)式定理可知,SKIPIF1<0展示式中共有SKIPIF1<0項(xiàng),∴SKIPIF1<0的展開式共有SKIPIF1<0項(xiàng).故選:B.2.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是(

)A.24 B.32 C.36 D.40【答案】D【分析】根據(jù)題意,SKIPIF1<0的項(xiàng)為SKIPIF1<0,化簡后即可求解.【詳解】根據(jù)題意,SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以SKIPIF1<0的系數(shù)是SKIPIF1<0.故選:D.3.SKIPIF1<0的展開式中的常數(shù)項(xiàng)為(

)A.588 B.589 C.798 D.799【答案】B【分析】因?yàn)镾KIPIF1<0展開式中的項(xiàng)可以看作8個(gè)含有三個(gè)單項(xiàng)式SKIPIF1<0各取一個(gè)相乘而得,分析組合可能,結(jié)合組合數(shù)運(yùn)算求解.【詳解】因?yàn)镾KIPIF1<0展開式中的項(xiàng)可以看作8個(gè)含有三個(gè)單項(xiàng)式SKIPIF1<0中各取一個(gè)相乘而得,若得到常數(shù)項(xiàng),則有:①8個(gè)1;②2個(gè)SKIPIF1<0,1個(gè)SKIPIF1<0,5個(gè)1;③4個(gè)SKIPIF1<0,2個(gè)SKIPIF1<0,2個(gè)1;所以展開式中的常數(shù)項(xiàng)為SKIPIF1<0.故選:B.4.SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為(

)A.SKIPIF1<0 B.60 C.SKIPIF1<0 D.30【答案】A【分析】將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,根據(jù)二項(xiàng)式定理求出含SKIPIF1<0的項(xiàng),即可得出答案.【詳解】因?yàn)镾KIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為SKIPIF1<0.故選:A.5.已知SKIPIF1<0展開式的各項(xiàng)系數(shù)之和為SKIPIF1<0,則展開式中SKIPIF1<0的系數(shù)為(

)A.270 B.SKIPIF1<0 C.330 D.SKIPIF1<0【答案】D【分析】令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0.再根據(jù)二項(xiàng)展開式的通項(xiàng)公式即可求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,又因?yàn)橹挥蠸KIPIF1<0,SKIPIF1<0展開式中有含SKIPIF1<0的項(xiàng),所以SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:D6.已知SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用二項(xiàng)式定理可分別得到SKIPIF1<0和SKIPIF1<0展開式的通項(xiàng),令SKIPIF1<0即可討論得到SKIPIF1<0的取值,結(jié)合展開式通項(xiàng),利用SKIPIF1<0的系數(shù)構(gòu)造方程即可求得SKIPIF1<0的值.【詳解】SKIPIF1<0展開式的通項(xiàng)為:SKIPIF1<0,SKIPIF1<0且SKIPIF1<0;SKIPIF1<0展開式的通項(xiàng)為:SKIPIF1<0,SKIPIF1<0且SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,SKIPIF1<0的系數(shù)為SKIPIF1<0,解得:SKIPIF1<0.故選:A.7.SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為12,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)乘法的運(yùn)算法則,結(jié)合組合數(shù)的性質(zhì)、二倍角的余弦公式進(jìn)行求解即可.【詳解】SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)可以看成:6個(gè)因式SKIPIF1<0中選取5個(gè)因式提供SKIPIF1<0,余下一個(gè)因式中提供SKIPIF1<0或者6個(gè)因式SKIPIF1<0中選取4個(gè)因式提供SKIPIF1<0,余下兩個(gè)因式中均提供SKIPIF1<0,故SKIPIF1<0的系數(shù)為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:C二、填空題8.SKIPIF1<0展開式中,SKIPIF1<0項(xiàng)的系數(shù)為.【答案】SKIPIF1<0【分析】由二項(xiàng)式定理求解.【詳解】SKIPIF1<0,∵SKIPIF1<0的指數(shù)是3,∴得到SKIPIF1<0,∵SKIPIF1<0的指數(shù)是2,得到SKIPIF1<0,∴SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<09.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為.【答案】SKIPIF1<0【分析】原多項(xiàng)式中寫出含SKIPIF1<0的項(xiàng),然后再從SKIPIF1<0中寫出含SKIPIF1<0的項(xiàng),即可得含SKIPIF1<0的系數(shù).【詳解】由含SKIPIF1<0的項(xiàng)中對(duì)應(yīng)SKIPIF1<0的指數(shù)分別為SKIPIF1<0,所以SKIPIF1<0,對(duì)于SKIPIF1<0中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以含SKIPIF1<0的系數(shù)是SKIPIF1<0.故答案為:SKIPIF1<0.10.SKIPIF1<0的展開式中,含SKIPIF1<0的項(xiàng)的系數(shù)為.【答案】SKIPIF1<0【分析】SKIPIF1<0的展開式中,含SKIPIF1<0的項(xiàng)有以下兩類,第一類:4個(gè)因式中有1個(gè)取到SKIPIF1<0,其余3個(gè)都取到2;第二類:4個(gè)因式中有2個(gè)取到SKIPIF1<0,其余2個(gè)都取到2,結(jié)合組合數(shù)即可求解.【詳解】SKIPIF1<0的展開式中,含SKIPIF1<0的項(xiàng)有以下兩類:第一類:4個(gè)因式中有1個(gè)取到SKIPIF1<0,其余3個(gè)都取到2,即SKIPIF1<0第二類:4個(gè)因式中有2個(gè)取到SKIPIF1<0,其余2個(gè)都取到2,即SKIPIF1<0所以SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,故含SKIPIF1<0的項(xiàng)的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<011.SKIPIF1<0展開式中常數(shù)項(xiàng)是.(答案用數(shù)字作答)【答案】SKIPIF1<0【分析】根據(jù)二項(xiàng)式展開式的通項(xiàng)化簡得常數(shù)項(xiàng)滿足SKIPIF1<0,即可代入求解.【詳解】SKIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,或SKIPIF1<0,所以常數(shù)項(xiàng)為SKIPIF1<0,故答案為:SKIPIF1<012.已知二項(xiàng)式SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為SKIPIF1<0,則SKIPIF1<0.【答案】2【分析】SKIPIF1<0表示有5個(gè)SKIPIF1<0因式相乘,根據(jù)SKIPIF1<0的來源分析即可求出答案.【詳解】SKIPIF1<0表示有5個(gè)SKIPIF1<0因式相乘,SKIPIF1<0來源如下:有1個(gè)SKIPIF1<0提供SKIPIF1<0,有3個(gè)SKIPIF1<0提供SKIPIF1<0,有1個(gè)SKIPIF1<0提供常數(shù),此時(shí)SKIPIF1<0系數(shù)是SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0故答案為:SKIPIF1<0.13.在SKIPIF1<0的展開式中,SKIPIF1<0項(xiàng)的系數(shù)為.【答案】220【分析】根據(jù)給定條件,分析展開式中SKIPIF1<0項(xiàng)出現(xiàn)的情況,再列式計(jì)算作答.【詳解】SKIPIF1<0的展開式通項(xiàng)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0展開式中SKIPIF1<0的最高指數(shù)小于12,而SKIPIF1<0的指數(shù)小于等于SKIPIF1<0,因此SKIPIF1<0中SKIPIF1<0的指數(shù)是負(fù)整數(shù),要得到SKIPIF1<0項(xiàng),當(dāng)且僅當(dāng)SKIPIF1<0,所以展開式中SKIPIF1<0項(xiàng)的系數(shù)是SKIPIF1<0展開式中SKIPIF1<0項(xiàng)的系數(shù)SKIPIF1<0.故答案為:220題型五兩個(gè)二項(xiàng)式乘積展開式的系數(shù)策略方法求解形如(a+b)n(c+d)m的展開式問題的思路(1)若n,m中一個(gè)比較小,可考慮把它展開得到多個(gè),如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展開分別求解.(2)觀察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(3)分別得到(a+b)n,(c+d)m的通項(xiàng)公式,綜合考慮.【典例1】(單選題)SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)的系數(shù)為(

)A.10 B.12 C.4 D.5【答案】A【分析】利用二項(xiàng)式定理的通項(xiàng)公式進(jìn)行分類討論即可求解.【詳解】SKIPIF1<0的二項(xiàng)展開式的通項(xiàng)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)為SKIPIF1<0;所以SKIPIF1<0的展開式中含SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0.故選:A.【題型訓(xùn)練】一、單選題1.SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為(

)A.200 B.40 C.120 D.80【答案】B【分析】根據(jù)二項(xiàng)式定理先求通項(xiàng),再根據(jù)項(xiàng)進(jìn)行分別求系數(shù),最后求和.【詳解】SKIPIF1<0,而SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的系數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的系數(shù)為SKIPIF1<0,所以SKIPIF1<0的系數(shù)為SKIPIF1<0,故選:B2.SKIPIF1<0的展開式中各項(xiàng)系數(shù)之和為SKIPIF1<0,則該展開式中常數(shù)項(xiàng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】取SKIPIF1<0代入計(jì)算得到SKIPIF1<0,確定SKIPIF1<0展開式的通項(xiàng),分別取SKIPIF1<0和SKIPIF1<0計(jì)算得到答案.【詳解】SKIPIF1<0的展開式中各項(xiàng)系數(shù)之和為SKIPIF1<0,令SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0,分別取SKIPIF1<0和SKIPIF1<0得到常數(shù)項(xiàng)為:SKIPIF1<0,故選:C3.已知SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為48,則實(shí)數(shù)SKIPIF1<0(

)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】A【分析】根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】二項(xiàng)式SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0SKI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論