版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.2.已知函,,則的最小值為()A. B.1 C.0 D.3.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.4.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.若函數(shù)的圖象過(guò)點(diǎn),則它的一條對(duì)稱軸方程可能是()A. B. C. D.6.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.7.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.8.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.29.已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]10.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個(gè)小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為11.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,12.下列不等式成立的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則14.的展開(kāi)式中,的系數(shù)為_(kāi)______(用數(shù)字作答).15.已知橢圓的左、右焦點(diǎn)分別為、,過(guò)橢圓的右焦點(diǎn)作一條直線交橢圓于點(diǎn)、.則內(nèi)切圓面積的最大值是_________.16.若隨機(jī)變量的分布列如表所示,則______,______.-101三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長(zhǎng)為2的正三角形,,為線段的中點(diǎn).(1)求證:平面平面;(2)若為線段上一點(diǎn),當(dāng)二面角的余弦值為時(shí),求三棱錐的體積.21.(12分)如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的實(shí)數(shù)m,都有,并證明你的結(jié)論.22.(10分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類(lèi)討論,考查推理能力,屬于中等題.2.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.3.A【解析】
根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.4.D【解析】
由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個(gè)函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪?,分別作出及的圖象,由圖知,當(dāng)時(shí),不符合題意,只須考慮的情形,當(dāng)與圖象相切于時(shí),由導(dǎo)數(shù)幾何意義,此時(shí),故.故選:D【點(diǎn)睛】此題考查的是函數(shù)中恒成立問(wèn)題,利用了數(shù)形結(jié)合的思想,屬于難題.5.B【解析】
把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對(duì)稱軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對(duì)稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.6.B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題7.B【解析】
根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫(xiě)判斷框,屬于基礎(chǔ)題.8.D【解析】
分析可得,再去絕對(duì)值化簡(jiǎn)成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長(zhǎng),所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【點(diǎn)睛】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.9.A【解析】
根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當(dāng)x>0時(shí),x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時(shí)sgn[g(x)]=1,當(dāng)x=0時(shí),x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時(shí)sgn[g(x)]=0,當(dāng)x<0時(shí),x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時(shí)sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點(diǎn)睛】此題考查函數(shù)新定義問(wèn)題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類(lèi)討論.10.C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計(jì)算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點(diǎn),底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點(diǎn)睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計(jì)算問(wèn)題,屬于中檔題.11.B【解析】
根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無(wú)法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無(wú)法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無(wú)法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.12.D【解析】
根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問(wèn)題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.二、填空題:本題共4小題,每小題5分,共20分。13.-5【解析】
畫(huà)出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A時(shí),z最小,求解即可。【詳解】畫(huà)出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問(wèn)題,解決線性規(guī)劃問(wèn)題的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。14.60【解析】
根據(jù)二項(xiàng)式定理展開(kāi)式通項(xiàng),即可求得的系數(shù).【詳解】因?yàn)?,所以,則所求項(xiàng)的系數(shù)為.故答案為:60【點(diǎn)睛】本題考查了二項(xiàng)展開(kāi)式通項(xiàng)公式的應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.15.【解析】令直線:,與橢圓方程聯(lián)立消去得,可設(shè),則,.可知,又,故.三角形周長(zhǎng)與三角形內(nèi)切圓的半徑的積是三角形面積的二倍,則內(nèi)切圓半徑,其面積最大值為.故本題應(yīng)填.點(diǎn)睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來(lái)解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調(diào)性法等.16.【解析】
首先求得a的值,然后利用均值的性質(zhì)計(jì)算均值,最后求得的值,由方差的性質(zhì)計(jì)算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計(jì)算性質(zhì)得.【點(diǎn)睛】本題主要考查分布列的性質(zhì),均值的計(jì)算公式,方差的計(jì)算公式,方差的性質(zhì)等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析(2)【解析】
(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.18.(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域?yàn)?;?)由,得,又為的內(nèi)角,所以,又因?yàn)樵谥?,,所以,所?【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題,19.(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因?yàn)?所以又,故,所以,所以(2)由(1)得,,,所以,所以,因?yàn)榍?即,解得,因?yàn)?所以,所以,所以,所以【點(diǎn)睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡(jiǎn),考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運(yùn)算能力.20.(1)見(jiàn)解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè),求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉(zhuǎn)化即得解.【詳解】(1)證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)椋允钦切?,所以,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.?)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系.則.于是,,.設(shè)面的一個(gè)法向量,由得令,則,即.設(shè),易得,.設(shè)面的一個(gè)法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點(diǎn)睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識(shí)點(diǎn),考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21.(1);(2)存在,Q為線段中點(diǎn)【解析】
解法一:(1)作出平面與平面的交線,可證平面,計(jì)算,,得出,從而得出的大?。唬?)證明平面,故而可得當(dāng)Q為線段的中點(diǎn)時(shí).解法二,以為原點(diǎn),以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度天然氣儲(chǔ)備庫(kù)安全運(yùn)營(yíng)管理合同
- 二零二五年度工業(yè)設(shè)備安裝與調(diào)試服務(wù)合同3篇
- 二零二五版快遞企業(yè)快遞物品安全防護(hù)合同大全3篇
- 2025年度城市綜合體門(mén)頭廣告品牌形象改造合同3篇
- 2025年度拆遷安置房交易全程跟蹤服務(wù)合同協(xié)議3篇
- 個(gè)人消費(fèi)性借款合同(2024版)9篇
- 二零二五年度可再生能源發(fā)電特許經(jīng)營(yíng)合作協(xié)議合同范本
- 二零二五年度醫(yī)療健康信息化運(yùn)維保障合同2篇
- 2025版商業(yè)物業(yè)安全責(zé)任書(shū)(含應(yīng)急預(yù)案)3篇
- 2025年度個(gè)性化產(chǎn)后恢復(fù)與新生兒護(hù)理個(gè)人月嫂服務(wù)協(xié)議4篇
- 《裝配式蒸壓加氣混凝土外墻板保溫系統(tǒng)構(gòu)造》中
- T-CSTM 01124-2024 油氣管道工程用工廠預(yù)制袖管三通
- 2019版新人教版高中英語(yǔ)必修+選擇性必修共7冊(cè)詞匯表匯總(帶音標(biāo))
- 新譯林版高中英語(yǔ)必修二全冊(cè)短語(yǔ)匯總
- 基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的游客規(guī)模預(yù)測(cè)研究
- 河道保潔服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 品管圈(QCC)案例-縮短接臺(tái)手術(shù)送手術(shù)時(shí)間
- 精神科病程記錄
- 閱讀理解特訓(xùn)卷-英語(yǔ)四年級(jí)上冊(cè)譯林版三起含答案
- 清華大學(xué)考博英語(yǔ)歷年真題詳解
- 人教版三年級(jí)上冊(cè)口算題(全冊(cè)完整20份 )
評(píng)論
0/150
提交評(píng)論