版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱柱()A. B. C. D.2.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.153.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.44.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.5.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.66.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.7.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根8.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④9.若復(fù)數(shù)z滿足,則()A. B. C. D.10.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了11.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個12.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.14.的展開式中的常數(shù)項為_______.15.已知,,且,若恒成立,則實數(shù)的取值范圍是____.16.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.18.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的解集包含,求的取值范圍.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時,求證:.20.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.21.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=2.B【解析】,∴,選B.3.B【解析】
解出,分別代入選項中的值進(jìn)行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.4.C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.5.B【解析】
利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.6.C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.7.C【解析】
由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.8.D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點到直線的距離公式.9.D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.10.C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.11.A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.12.A【解析】
結(jié)合復(fù)數(shù)的除法運算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點睛】本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)二項展開式的通項公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當(dāng)時,,則.故答案為:【點睛】本題考查求二項展開式指定項的系數(shù),是基礎(chǔ)題.14.【解析】
寫出展開式的通項公式,考慮當(dāng)?shù)闹笖?shù)為零時,對應(yīng)的值即為常數(shù)項.【詳解】的展開式通項公式為:,令,所以,所以常數(shù)項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項公式分析常數(shù)項對應(yīng)的取值.15.(-4,2)【解析】試題分析:因為當(dāng)且僅當(dāng)時取等號,所以考點:基本不等式求最值16.【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),,直線的傾斜角為(2)【解析】
(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標(biāo)方程后可得傾斜角;(2)求出直線與軸交點,用參數(shù)表示點坐標(biāo),求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標(biāo)為則當(dāng)且僅當(dāng)時,取最大值.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,屬于基礎(chǔ)題.求兩點間距離的最值時,用參數(shù)方程設(shè)點的坐標(biāo)可把問題轉(zhuǎn)化為三角函數(shù)問題.18.(1);(2).【解析】
(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時,”恒成立,利用絕對值不等式的性質(zhì)可得:,問題得解.【詳解】當(dāng)時,,當(dāng)時,由得,解得;當(dāng)時,無解;當(dāng)時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當(dāng)時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉(zhuǎn)化能力及絕對值不等式的性質(zhì),考查計算能力,屬于中檔題.19.(1)見解析(2)見解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為,,①當(dāng)時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時,,所以在上單調(diào)遞增;④當(dāng)時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時,,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當(dāng)時,成立.【點睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進(jìn)而可得出,則橢圓的標(biāo)準(zhǔn)方程可求;(Ⅱ)設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關(guān)于的函數(shù)表達(dá)式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)點、,聯(lián)立消去,得,,則,,設(shè)圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達(dá)定理與弦長公式的應(yīng)用,考查計算能力,屬于中等題.21.(1)(2)證明見解析【解析】
(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.22.(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物質(zhì)能源購銷協(xié)議
- 網(wǎng)絡(luò)安全技術(shù)建設(shè)
- 我對煤礦安全負(fù)責(zé)
- 快速響應(yīng)筆譯服務(wù)
- 挖掘機(jī)訂購合同文本
- 地域特色產(chǎn)品購銷合同
- 新車購銷合同簡單版
- 熱力管道施工招標(biāo)時間表
- 混凝土路面勞務(wù)分包合同模板
- 消防工程勞務(wù)分包招標(biāo)
- 《地質(zhì)災(zāi)害監(jiān)測技術(shù)規(guī)范》
- 2024-2030年中國云母制品制造市場發(fā)展?fàn)顩r及投資前景規(guī)劃研究報告
- 2025年上半年內(nèi)蒙古鄂爾多斯伊金霍洛監(jiān)獄招聘17名(第三批)易考易錯模擬試題(共500題)試卷后附參考答案
- QC080000培訓(xùn)講義課件
- 24秋國家開放大學(xué)《農(nóng)產(chǎn)品質(zhì)量管理》形考任務(wù)1-2+形考實習(xí)1-3參考答案
- 科技興國未來有我主題班會教學(xué)設(shè)計
- 房子管護(hù)合同范例
- 光伏施工安全措施
- 2024-2025華為ICT大賽(網(wǎng)絡(luò)賽道)高頻備考試題庫500題(含詳解)
- 汽車智能制造技術(shù)課件
- 江蘇省揚州市邗江中學(xué)2025屆物理高一第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
評論
0/150
提交評論