




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
July2024
Mcsey
&company
QuantumBlack
AIbyMckinsey
McKinseyDigitalPractice
WhyagentsarethenextfrontierofgenerativeAI
Bymovingfrominformationtoaction—thinkvirtualcoworkers
abletocompletecomplexworkflows—thetechnologypromisesanewwaveofproductivityandinnovation.
ByLareinaYee,MichaelChui,andRogerRobertswithStephenXu
Overthepastcoupleofyears,theworldhas
marveledatthecapabilitiesandpossibilities
unleashedbygenerativeAI(genAI).Foundation
modelssuchaslargelanguagemodels(LLMs)canperformimpressivefeats,extractinginsightsandgeneratingcontentacrossnumerousmediums,
suchastext,audio,images,andvideo.ButthenextstageofgenAIislikelytobemoretransformative.
Wearebeginninganevolutionfromknowledge-based,genAI–powered
tools—say,chatbotsthatanswerquestions
andgeneratecontent—togenAI–enabled“agents”thatusefoundationmodelstoexecutecomplex,
multistepworkflowsacrossadigitalworld.Inshort,thetechnologyismovingfromthoughttoaction.
Broadlyspeaking,“agentic”systemsreferto
digitalsystemsthatcanindependentlyinteractinadynamicworld.Whileversionsofthese
softwaresystemshaveexistedforyears,the
natural-languagecapabilitiesof
genAIunveilnew
possibilities
,enablingsystemsthatcanplantheiractions,useonlinetoolstocompletethosetasks,
collaboratewithotheragentsandpeople,andlearntoimprovetheirperformance.GenAIagents
eventuallycouldactasskilledvirtualcoworkers,
workingwithhumansinaseamlessandnatural
manner.Avirtualassistant,forexample,couldplanandbookacomplexpersonalizedtravelitinerary,
handlinglogisticsacrossmultipletravelplatforms.
Usingeverydaylanguage,anengineercould
describeanewsoftwarefeaturetoaprogrammeragent,whichwouldthencode,test,iterate,and
deploythetoolithelpedcreate.
Agenticsystemstraditionallyhavebeendifficulttoimplement,requiringlaborious,rule-based
programmingorhighlyspecifictrainingof
machine-learningmodels.GenAIchangesthat.
Whenagenticsystemsarebuiltusingfoundation
models(whichhavebeentrainedonextremelylargeandvariedunstructureddatasets)ratherthan
predefinedrules,theyhavethepotentialtoadapt
todifferentscenariosinthesamewaythat
LLMs
canrespondintelligibly
topromptsonwhichtheyhavenotbeenexplicitlytrained.Furthermore,usingnaturallanguageratherthanprogrammingcode,
ahumanusercoulddirectagenAI–enabled
agentsystemtoaccomplishacomplexworkflow.Amultiagentsystemcouldtheninterpretand
organizethisworkflowintoactionabletasks,assign
worktospecializedagents,executetheserefinedtasksusingadigitalecosystemoftools,and
collaboratewithotheragentsandhumanstoiterativelyimprovethequalityofitsactions.
Inthisarticle,weexploretheopportunitiesthat
theuseofgenAIagentspresents.Althoughthe
technologyremainsinitsnascentphaseand
requiresfurthertechnicaldevelopmentbefore
it’sreadyforbusinessdeployment,it’squickly
attractingattention.Inthepastyearalone,Google,Microsoft,OpenAI,andothershaveinvestedin
softwarelibrariesandframeworkstosupport
agenticfunctionality.LLM-poweredapplications
suchasMicrosoftCopilot,AmazonQ,andGoogle’supcomingProjectAstraareshiftingfrombeing
knowledge-basedtobecomingmoreaction-based.
CompaniesandresearchlabssuchasAdept,
crewAI,andImbuealsoaredevelopingagent-basedmodelsandmultiagentsystems.Giventhespeed
withwhichgenAIisdeveloping,agentscould
becomeascommonplaceaschatbotsaretoday.
Whatvaluecanagentsbringtobusinesses?
Thevaluethatagentscanunlockcomesfromtheirpotentialtoautomatealongtailofcomplexuse
casescharacterizedbyhighlyvariableinputsand
outputs—usecasesthathavehistoricallybeen
difficulttoaddressinacost-ortime-efficient
manner.Somethingassimpleasabusinesstrip,forexample,caninvolvenumerouspossibleitinerariesencompassingdifferentairlinesandflights,not
tomentionhotelrewardsprograms,restaurant
reservations,andoff-hoursactivities,allofwhich
mustbehandledacrossdifferentonlineplatforms.Whiletherehavebeeneffortstoautomatepartsofthisprocess,muchofitstillmustbedonemanually.
Thisisinlargepartbecausethewidevariationin
potentialinputsandoutputsmakestheprocesstoocomplicated,costly,ortime-intensivetoautomate.
GenAI–enabledagentscaneasetheautomationof
complexandopen-endedusecasesinthreeimportantways:
WhyagentsarethenextfrontierofgenerativeAI2
—Agentscanmanagemultiplicity.Manybusinessusecasesandprocessesarecharacterizedbyalinearworkflow,withaclearbeginningand
seriesofstepsthatleadtoaspecificresolutionoroutcome.Thisrelativesimplicitymakesthemeasilycodifiedandautomatedinrule-based
systems.Butrule-basedsystemsoftenexhibit“brittleness”—thatis,theybreakdownwhen
facedwithsituationsnotcontemplatedbythe
designersoftheexplicitrules.Manyworkflows,forexample,arefarlesspredictable,markedbyunexpectedtwistsandturnsandarangeof
possibleoutcomes;theseworkflowsrequire
specialhandlingandnuancedjudgmentthat
makesrules-basedautomationchallenging.
ButgenAIagentsystems,becausetheyare
basedonfoundationmodels,havethepotentialtohandleawidevarietyofless-likelysituationsforagivenusecase,adaptinginrealtimeto
performthespecializedtasksrequiredtobringaprocesstocompletion.
—Agentsystemscanbedirectedwithnatural
language.Currently,toautomateausecase,itfirstmustbebrokendownintoaseriesofrules
andstepsthatcanbecodified.Thesestepsaretypicallytranslatedintocomputercodeand
integratedintosoftwaresystems—anoften
costlyandlaboriousprocessthatrequires
significanttechnicalexpertise.Becauseagenticsystemsusenaturallanguageasaformof
instruction,evencomplexworkflowscan
beencodedmorequicklyandeasily.What’s
more,theprocesscanpotentiallybedonebynontechnicalemployees,ratherthansoftwareengineers.Thismakesiteasiertointegrate
subjectmatterexpertise,grantswideraccesstogenAIandAItools,andeasescollaborationbetweentechnicalandnontechnicalteams.
—Agentscanworkwithexistingsoftwaretoolsandplatforms.Inadditiontoanalyzingand
generatingknowledge,agentsystemscanusetoolsandcommunicateacrossabroaderdigitalecosystem.Forinstance,anagentcanbe
directedtoworkwithsoftwareapplications
(suchasplottingandchartingtools),search
thewebforinformation,collectandcompile
humanfeedback,andevenleverageadditionalfoundationmodels.Digital-tooluseisbotha
definingcharacteristicofagents(it’soneway
thattheycanactintheworld)butalsoawayin
whichtheirgenAIcapabilitiescanuniquelybe
broughttobear.Foundationmodelscanlearn
howtointerfacewithtools,whetherthrough
naturallanguageorotherinterfaces.Without
foundationmodels,thesecapabilitieswould
requireextensivemanualeffortstointegrate
systems(forexample,usingextract,transform,andloadtools)ortediousmanualeffortsto
collateoutputsfromdifferentsoftwaresystems.
HowgenAI–enabledagentscouldwork
Agentscansupporthigh-complexityusecases
acrossindustriesandbusinessfunctions,
particularlyforworkflowsinvolvingtime-consumingtasksorrequiringvariousspecializedtypesof
qualitativeandquantitativeanalysis.Agentsdothisbyrecursivelybreakingdowncomplexworkflows
andperformingsubtasksacrossspecialized
instructionsanddatasourcestoreachthedesiredgoal.Theprocessgenerallyfollowsthesefour
steps(Exhibit1):
1.Userprovidesinstruction:AuserinteractswiththeAIsystembygivinganatural-language
prompt,muchlikeonewouldinstructatrustedemployee.Thesystemidentifiestheintendedusecase,askingtheuserforadditional
clarificationwhenrequired.
2.Agentsystemplans,allocates,andexecutes
work:Theagentsystemprocessesthepromptintoaworkflow,breakingitdownintotasksandsubtasks,whichamanagersubagentassignstootherspecializedsubagents.Thesesubagents,equippedwithnecessarydomainknowledge
andtools,drawonprior“experiences”and
codifieddomainexpertise,coordinatingwitheachotherandusingorganizationaldataandsystemstoexecutetheseassignments.
3.Agentsystemiterativelyimprovesoutput:
Throughouttheprocess,theagentmayrequestadditionaluserinputtoensureaccuracyand
relevance.Theprocessmayconcludewiththe
agentprovidingfinaloutputtotheuser,iteratingonanyfeedbacksharedbytheuser.
WhyagentsarethenextfrontierofgenerativeAI3
Exhibit1
AgentsenabledbygenerativeAIsooncouldfunctionashypere代cientvirtualcoworkers.
Agentsystem
Illustrationofhowan
agentsystemmight
Manageragent
executeaworklow,
Externalsystems:
Agentsinteractwith
databasesandsystems—
bothorganizationaland
externaldata—to
completethetask.
fromprompttooutput
Analystagent
Planneragent
Checkeragent
Specialistagents
3
1
2
End
Start
4
Usingnaturallanguage,theuserpromptsthe
generativeAIagentsystemtocompleteatask.
Theagentsysteminterpretsthepromptandbuildsa
workplan.Amanageragentsubdividestheprojectintotasksassignedtospecialistagents;theygatherand
analyzedatafrommultiplesourcesandcollaborate
withoneanothertoexecutetheirindividualmissions.
Theagentteamsharesthedraftoutputwith
theuser.
Theagentteamreceivesuserfeedback,theniteratesand
re?nesoutputaccordingly.
McKinsey&Company
4.Agentexecutesaction:Theagentexecutesanynecessaryactionsintheworldtofullycompletetheuser-requestedtask.
Artofthepossible:Threepotentialusecases
Whatdothesekindsofsystemsmeanfor
businesses?Thefollowingthreehypothetical
usecasesofferaglimpseofwhatcouldbepossibleinthenot-too-distantfuture.
Usecase1:Loanunderwriting
Financialinstitutionspreparecredit-riskmemosto
assesstherisksofextendingcreditoraloantoa
borrower.Theprocessinvolvescompiling,analyzing,andreviewingvariousformsofinformationpertainingtotheborrower,loantype,andotherfactors.Given
themultiplicityofcredit-riskscenariosandanalyses
required,thistendstobeatime-consumingand
highlycollaborativeeffort,requiringarelationship
managertoworkwiththeborrower,stakeholders,
andcreditanalyststoconductspecializedanalyses,whicharethensubmittedtoacreditmanagerfor
reviewandadditionalexpertise.
Potentialagent-basedsolution:Anagentic
system—comprisingmultipleagents,eachassumingaspecialized,task-basedrole—couldpotentially
bedesignedtohandleawiderangeofcredit-risk
scenarios.Ahumanuserwouldinitiatetheprocess
byusingnaturallanguagetoprovideahigh-level
workplanoftaskswithspecificrules,standards,andconditions.Thenthisteamofagentswouldbreak
downtheworkintoexecutablesubtasks.
Oneagent,forexample,couldactasthe
relationshipmanagertohandlecommunications
WhyagentsarethenextfrontierofgenerativeAI4
betweentheborrowerandfinancialinstitutions.
Anexecutoragentcouldcompilethenecessary
documentsandforwardthemtoafinancialanalystagentthatwould,say,examinedebtfromcashflowstatementsandcalculaterelevantfinancialratios,whichwouldthenbereviewedbyacriticagentto
identifydiscrepanciesanderrorsandprovidefeedback.Thisprocessofbreakdown,analysis,refinement,andreviewwouldberepeateduntilthefinalcreditmemoiscompleted(Exhibit2).
UnlikesimplergenAIarchitectures,agentscan
producehigh-qualitycontent,reducingreviewcycletimesby20to60percent.Agentsarealsoableto
traversemultiplesystemsandmakesenseofdatapulledfrommultiplesources.Finally,agentscan
showtheirwork:creditanalystscanquicklydrill
intoanygeneratedtextornumbers,accessingthecompletechainoftasksandusingdatasourcestoproducethegeneratedinsights.Thisfacilitatestherapidverificationofoutputs.
Usecase2:Codedocumentationandmodernization
Legacysoftwareapplicationsandsystemsat
largeenterprisesoftenposesecurityrisksand
canslowthepaceofbusinessinnovation.But
modernizingthesesystems
canbecomplex,costly,andtime-intensive,requiringengineerstoreview
andunderstandmillionsoflinesoftheolder
codebaseandmanualdocumentationofbusinesslogic,andthentranslatingthislogictoanupdatedcodebaseandintegratingitwithothersystems.
Potentialagent-basedsolution:AIagentshave
thepotentialtosignificantlystreamlinethisprocess.Aspecializedagentcouldbedeployedasa
legacy-softwareexpert,analyzingoldcodeand
documentingandtranslatingvariouscodesegments.Concurrently,aqualityassuranceagentcould
critiquethisdocumentationandproducetestcases,helpingtheAIsystemtoiterativelyrefineitsoutputandensureitsaccuracyandadherenceto
Exhibit2
GenerativeAIagentshavethepotentialtochangethewayweworkbysuperchargingproductivity.
Illustrativeusecase:credit-riskmemos
Financialinstitutionsoftenspend1–4
weekscreatinga
credit-riskmemo.
Thecurrentprocess:
Start
TheRManda
creditanalyst
collaboratively
analyzethedata.
Thecreditanalysttypicallyspends20+hourswritingthememo.
Arelationshipmanager(RM)
gathersdatafrom
15+sourceson
borrower,loantype,andotherfactors.
TheRMreviewsthememoandprovidesfeedback;
thecreditanalystwritesanewdraftincorporatingthefeedback.
3
2
1
End
4
Start
2
1
3
End
GenerativeAI
(genAI)agentscouldcuttimespenton
creatingcredit-riskmemosby20–60%usingthesesteps:
TheRMpromptsthegenAIagentsystemand
providesrelevantmaterialsneeded
toproducethememo.
Theagentsubdivides
theprojectintotasks
thatareassignedto
specialistagents,whichgatherandanalyzedatafrommultiplesources
andthencollaboratetogenerateadraftmemo.
TheRMandcredit
analystreviewthe
memoandgive
feedback;theagentincorporatesthe
feedbackintothe?nalmemo.
McKinsey&Company
WhyagentsarethenextfrontierofgenerativeAI5
organizationalstandards.Therepeatablenatureof
thisprocess,meanwhile,couldproduceaflywheel
effect,inwhichcomponentsoftheagentframeworkarereusedforothersoftwaremigrationsacrosstheorganization,significantlyimprovingproductivityandreducingtheoverallcostinsoftwaredevelopment.
Usecase3:OnlinemarketingcampaigncreationDesigning,launching,andrunninganonline
marketingcampaign
tendstoinvolveanarrayofdifferentsoftwaretools,applications,and
platforms.Andtheworkflowforanonline
marketingcampaignishighlycomplex.Business
objectivesandmarkettrendsmustbetranslated
intocreativecampaignideas.Writtenandvisual
materialmustbecreatedandcustomizedfor
differentsegmentsandgeographies.Campaignsmustbetestedwithusergroupsacrossvarious
platforms.Toaccomplishthesetasks,marketing
teamsoftenusedifferentformsofsoftwareand
mustmoveoutputsfromonetooltoanother,whichisoftentediousandtime-consuming.
Potentialagent-basedsolution:Agentscanhelpconnectthisdigitalmarketingecosystem.For
example,amarketercoulddescribetargeted
users,initialideas,intendedchannels,andotherparametersinnaturallanguage.Then,anagentsystem—withassistancefrommarketing
professionals—wouldhelpdevelop,test,anditerate
differentcampaignideas.Adigitalmarketing
strategyagentcouldtaponlinesurveys,analyticsfromcustomerrelationshipmanagementsolutions,andothermarketresearchplatformsaimedat
gatheringinsightstocraftstrategiesusing
multimodalfoundationmodels.Agentsforcontentmarketing,copywriting,anddesigncouldthenbuildtailoredcontent,whichahumanevaluatorwould
reviewforbrandalignment.Theseagentswould
collaboratetoiterateandrefineoutputsandaligntowardanapproachthatoptimizesthecampaign’simpactwhileminimizingbrandrisk.
Howshouldbusinessleaderspreparefortheageofagents?
Althoughagenttechnologyisquitenascent,
increasinginvestmentsinthesetoolscouldresultinagenticsystemsachievingnotablemilestonesandbeingdeployedatscaleoverthenextfewyears.As
such,itisnottoosoonforbusinessleaderstolearnmoreaboutagentsandconsiderwhethersomeof
theircoreprocessesorbusinessimperativescanbeacceleratedwithagenticsystemsandcapabilities.Thisunderstandingcaninformfutureroadmap
planningorscenariosandhelpleadersstayattheedgeofinnovationreadiness.Oncethosepotentialusecaseshavebeenidentified,organizationscanbeginexploringthegrowingagentlandscape,
utilizingAPIs,toolkits,andlibraries(forexample,
MicrosoftAutogen,HuggingFace,andLangChain)tostartunderstandingwhatisrelevant.
Topreparefortheadventofagenticsystems,
organizationsshouldconsiderthesethreefactors,whichwillbekeyifsuchsystemsaretodeliverontheirpotential:
—Codificationofrelevantknowledge:
Implementingcomplexusecaseswilllikely
requireorganizationstodefineanddocument
businessprocessesintocodifiedworkflowsthatarethenusedtotrainagents.Likewise,
organizationsmightconsiderhowtheycan
capturesubjectmatterexpertise,whichwillbeusedtoinstructagentsinnaturallanguage,thusstreamliningcomplexprocesses.
—Strategictechplanning:Organizationswill
needtoorganizetheirdataandITsystemsto
ensurethatagentsystemscaninterface
effectivelywithexistinginfrastructure.That
includescapturinguserinteractionsfor
continuousfeedbackandcreatingtheflexibilitytointegratefuturetechnologieswithout
disruptingexistingoperations.
—Human-in-the-loopcontrolmechanisms:As
genAIagentsbegininteractingwiththerealworld,controlmechanismsareessentialtobalance
autonomyandrisk(seesidebar,“Understandingtheuniquerisksposedbyagenticsystems”).
Humansmustvalidateoutputsforaccuracy,
compliance,andfairness;workwithsubject
matterexpertstomaintainandscaleagent
systems;andcreatealearningflywheelfor
ongoingimprovement.Organizationsshouldstartconsideringunderwhatconditionsandhow
suchhuman-in-the-loopmechanismsshouldbedeployed.
WhyagentsarethenextfrontierofgenerativeAI6
Understandingtheuniquerisksposedbyagenticsystems
Largelanguagemodels(LLMs),aswenowknow,arepronetomistakesand
hallucinations.BecauseagentsystemsprocesssequencesofLLM-derived
outputs,ahallucinationwithinoneoftheseoutputscouldhavecascadingeffectsifprotectionsarenotinplace.
Additionally,becauseagentsystems
aredesignedtooperatewithautonomy,
businessleadersmustconsideradditionaloversightmechanismsandguardrails.
Whileitisdifficulttofullyanticipatealltherisksthatwillbeintroducedwithagents,herearesomethatshouldbeconsidered.
Potentiallyharmfuloutputs
Largelanguagemodelsarenotalways
accurate,sometimesprovidingincorrectinformationorperformingactionswith
undesirableconsequences.Theserisks
areheightenedasgenerativeAI(genAI)agentsindependentlycarryouttasks
usingdigitaltoolsanddatainhighly
variablescenarios.Forinstance,anagent
mightapproveahigh-riskloan,leadingtofinancialloss,oritmaymakeanexpensive,nonrefundablepurchaseforacustomer.
Mitigationstrategy:Organizations
shouldimplementrobustaccountabilitymeasures,clearlydefiningthe
responsibilitiesofbothagentsand
humanswhileensuringthatagentoutputscanbeexplainedandunderstood.This
couldbeaccomplishedbydeveloping
frameworkstomanageagentautonomy(forexample,limitingagentactions
basedonusecasecomplexity)and
ensuringhumanoversight(forexample,
verifyingagentoutputsbeforeexecutionandconductingregularauditsofagent
decisions).Additionally,transparencyandtraceabilitymechanismscanhelpusers
understandtheagent’sdecisionmakingprocesstoidentifypotentiallyfraught
issuesearly.
Misuseoftools
Withtheirabilitytoaccesstoolsanddata,agentscouldbedangerousifintentionallymisused.Agents,forexample,couldbe
usedtodevelopvulnerablecode,createconvincingphishingscams,orhack
sensitiveinformation.
Mitigationstrategy:Forpotentially
high-riskscenarios,organizationsshouldbuildinguardrails(forexample,access
controls,limitsonagentactions)and
createclosedenvironmentsforagents(forinstance,limittheagent’saccesstocertaintoolsanddatasources).
Additionally,organizationsshouldapplyreal-timemonitoringofagentactivities
withautomatedalertsforsuspicious
behavior.Regularauditsandcompliancecheckscanensurethatguardrailsremaineffectiveandrelevant.
Insufficientorexcessivehuman–agenttrust
Justasinrelationshipswithhuman
coworkers,interactionsbetweenhumansandAIagentsarebasedontrust.Ifuserslackfaithinagenticsystems,theymightscalebackthehuman–agentinteractionsandinformationsharingthatagentic
systemsrequireiftheyaretolearnandimprove.Conversely,asagentsbecomemoreadeptatemulatinghumanlike
behavior,someuserscouldplacetoo
muchtrustinthem,ascribingtothem
human-levelunderstandingandjudgment.
Thiscanleadtousersuncritically
acceptingrecommendationsorgivingagentstoomuchautonomywithout
sufficientoversight.
Mitigationstrategy:Organizationscanmanagetheseissuesbyprioritizing
thetransparencyofagentdecision
making,ensuringthatusersaretrainedintheresponsibleuseofagents,and
establishingahumans-in-the-loop
processtomanageagentbehavior.Humanoversightofagentprocesses
iskeytoensuringthatusersmaintainabalancedperspective,critically
evaluateagentperformance,andretainfinalauthorityandaccountabilityin
agentactions.Furthermore,agent
performanceshouldbeevaluatedbytying
agents’activitiestoconcreteoutcomes(forexample,customersatisfaction,
successfulcompletionratesoftickets).
Inadditiontoaddressingthesepotentialrisks,organizationsshouldconsiderthebroaderissuesraisedbygenAIagents:
—Valuealignment:Becauseagentsareakintocoworkers,theiractionsshouldembodyorganizationalvalues.What
valuesshouldagentsembodyintheirdecisions?Howcanagentsbe
regularlyevaluatedandtrainedtoalignwiththosevalues?
—Workforceshifts:Bycompletingtasksindependently,agentsystemsstand
tosignificantlyalterthewayworkis
accomplished,potentiallyallowing
humanstofocusmoreonhigher-leveltasksthatrequirecriticalthinkingandmanagerialskills.Howwillrolesand
responsibilitiesshiftineachbusinessfunction?Howcanemployeesbe
providedwithretraining
opportunities?Aretherenew
collaborationmodelsthatcanenhancecooperationbetweenhumansandAIagents?
—Anthr
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代購(gòu)材料服務(wù)合同范本
- 【可行性報(bào)告】2025年日化香精行業(yè)項(xiàng)目可行性分析報(bào)告
- 供貨合同范本設(shè)備配件
- 借貸保證合同范本
- 共同加盟合同范本
- 低溫奶銷售合同范本
- 科技展會(huì)中的品牌故事講述藝術(shù)
- 自如海燕計(jì)劃訴訟
- 二手空調(diào)簡(jiǎn)易買賣合同范例
- 海城同澤中學(xué)誠(chéng)信高考教育活動(dòng)實(shí)施方案
- 雕版印刷術(shù)的發(fā)明《金剛經(jīng)》課件
- 精密測(cè)量課程中的思政案例弘揚(yáng)工匠精神助力科技強(qiáng)國(guó)
- 殘疾人就業(yè)服務(wù)
- 傳統(tǒng)的中國(guó)紋樣與飾品設(shè)計(jì)
- 工業(yè)園區(qū)消防培訓(xùn)課件
- 供水管網(wǎng)項(xiàng)目背景
- 淺層高效氣浮池技術(shù)說(shuō)明
- 小學(xué)大觀念教學(xué):設(shè)計(jì)與實(shí)施
- 《安全原理》習(xí)題庫(kù)及參考答案
- 分離工程授課教案
評(píng)論
0/150
提交評(píng)論