




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
Spectralbacktestsunboundedandfolded
MichaelB.GordyandAlexanderJ.McNeil
2024-060
Pleasecitethispaperas:
Gordy,MichaelB.,andAlexanderJ.McNeil(2024).“Spectralbacktestsunboundedandfolded,”FinanceandEconomicsDiscussionSeries2024-060.Washington:BoardofGover-norsoftheFederalReserveSystem,
/10.17016/FEDS.2024.060
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
1
Spectralbacktestsunboundedandfolded*
MichaelB.Gordy
FederalReserveBoard,WashingtonDC
AlexanderJ.McNeil
SchoolforBusinessandSociety,UniversityofYork
15July2024
Abstract
Inthespectralbacktestingframeworkof
GordyandMcNeil
(2020)aprobability
measureontheunitintervalisusedtoweightthequantilesofgreatestinterestinthevalidationofforecastmodelsusingprobability-integraltransform(PIT)data.WeextendthisframeworktoallowgeneralLebesgue-Stieltjeskernelmeasureswithun-boundeddistributionfunctions,whichbringspowerfulnewtestsbasedontruncatedlocation-scalefamiliesintothespectralclass.Moreover,byconsideringuniformdistri-butionpreservingtransformationsofPITvaluesthetestframeworkisgeneralizedtoallowteststhatarefocusedonbothtailsoftheforecastdistribution.
JELCodes:C52;G21;G32
Keywords:Backtesting;Volatility;Riskmanagement
*Theopinionsexpressedhereareourown,anddonotreflecttheviewsoftheBoardofGovernorsoritsstaff.AddresscorrespondencetoAlexanderJ.McNeil,UniversityofYork,alexander.mcneil@york.ac.uk.
2
1Introduction
GordyandMcNeil
(2020)studyaclassofbacktestsforforecastdistributionsinwhichthetest
statisticdependsonaspectraltransformationofaquantileexceedanceindicatorfunction.Thespectraltransformationweightsquantileexceedanceeventsusingakernelmeasurewhichischosenbythevalidatortoreflectthevalidator’sprioritiesformodelperformance.Thepresentpaperextendstheoriginaltreatmentintwodirections.First,whereas
Gordyand
McNeil
(2020)restrictthekernelmeasuretotheclassofprobabilitymeasures,inthispaper
weallowthekernelmeasuretobeunbounded,subjecttoanintegrabilitycondition.Weshowthatunboundedkernelsdelivertestsmateriallymorepowerfulthantestsbasedontheboundedkernelsstudiedby
GordyandMcNeil
(2020)
.Second,weintroduceapre-processingofthedatabyafoldingtransformationthatleavesthesizeofthebacktestunalteredbutincreasesitspoweragainstmisspecificationsofforecastvolatilitythatareextremelycommoninpractice.
Ourextensionstothespectralbacktestingframeworkaregermanetoanyvalidationexerciseinwhichperformancethroughoutoneorbothtailsoftheforecastdistributionisofspecialinterest.Ourinvestigationismotivatedbyrecentdevelopmentsinthecapitalregulationofthetradingoperationsoflargebanks.
UnderthecurrentBaselIIIrules(Basel
CommitteeonBankSupervision,
2019),minimumcapitalrequirementsforabank’strading
bookaredeterminedbythebank’sself-reporteddailyExpectedShortfall(ES)attheα1=97.5%confidencelevel.TheadoptionofESdepartsfromearlierBaselregimestiedtoValue-at-Risk(VaR)attheα*=99%confidencelevel.LeftunchangedinBaselIIIistheroleoftheregulatorinvalidationofthebank’smodelthroughbacktesting.Forthispurpose,banksintheUnitedStatesreporttoregulatorsforeachtradingdaytheprobabilityassociatedwiththerealizedprofit-and-loss(P&L)inthepriorday’sforecastdistribution,i.e.,theprobabilityintegraltransform(PIT)associatedwithrealizedP&L.ObservingthePITvaluesisequivalenttoobservingVaRexceedancesateverylevelα∈[0,1].Besides
GordyandMcNeil
(2020),bank-reportedPITdatahavebeenstudiedby
Lynchetal.
(2023)
3
and
Iercosanetal.
(2023)
.
UnderaVaR-basedregime,theregulatorwouldhaveparticularinterestintestingmodelperformanceoversomerangeofconfidencelevelsintheneighborhoodofα*.Accordingly,
GordyandMcNeil
(2020)illustratetheirmethodswithkernelsplacingmassinawindow
[α1,α2]with0<α1<α*<α2<1,e.g.,[0.985,0.995].Insuchasetting,onlyboundedmeasuresproducefiniteteststatistics,andsinceourteststatisticisinvarianttothemeasureofthewindow,withoutlossofgeneralitywecanrestrictattentiontoprobabilitymeasures.BecauseESisanintegralofVaRaboveathresholdlevel,itisnaturalunderthenewregimetoconsidercontinuouskernelsthatweightoneveryαabovesomethreshold,e.g.,α1=0.975intheBaselcontext.Inthissetting,evensomeunboundedmeasurescanbeguaranteedtoyieldvalidteststatistics.Further,becausebankmodelstendtobreakdownunderextrememarketeventsandunboundedmeasuresweightmostheavilyonsuchtailevents,weexpectunboundedmeasurestodelivermorepowerfultests.Weconfirmthisintuitioninsimulationexercisesandshowaswellthatthispowerdoesnotcomeattheexpenseofsizedistortions.
Thetopicofbacktestingexpectedshortfallhasledtoalivelydebateaboutwhether
ornotESisamenabletobacktesting(Gneiting,
2011;
AcerbiandSzékely,
2014;
Fissleret
al.
,
2016;
AcerbiandSzékely,
2023)
.Agrowingliterature,including
Pattonetal.
(2019)
and
Barendseetal.
(2023),employselicitabilitytheorytodevelopjointbacktestsofVaR
andES.Forregulatoryuse,thismethodologywouldgenerallyrequirethatbankssubmittimeseriesofbothVaRandESestimates,althougharecentpaperof
BayerandDimitriadis
(2022)suggestsaworkaroundtoobtainatestofESestimatesonly,atthepossibleexpense
ofsomemodelmisspecification.
IssuesrelatedtobacktestingestimatesofriskmeasuressuchasESaresidesteppedinourframeworkbecausewetesttheforecastdistributionsfromwhichriskmeasuresareestimated,ratherthantheestimatesthemselves.ItmaybenotedthatanumberofrecentpapersproposePIT-basedapproachestobacktestingexpectedshortfalland,inparticular,exploitthecumulativeviolationprocessof
DuandEscanciano
(2017),whichcanbeviewedasa
4
particularchoiceofspectraltransformation.Theseinclude
Duetal.
(2023),whoproposean
improvedconditionalESbacktest,
HogaandDemetrescu
(2023),whoproposeareal-time
monitoringprocedureforESforecastsand
Huéetal.
(2024)whouseorthogonalpolynomials
tojointlytestmomentconditionsforthecumulativeviolationprocessandtheprocessofdurationsbetweenVaRexceedances.
EveniftheregulatorisinterestedexclusivelyintheuppertailofthePITdistribution,itisoftenthecasethatmodelsthataremisspecifiedintheuppertailmaybesimilarlymisspecifiedinthelowertail.Forexample,inariskmanagementsetting,afailuretocapturestochasticvolatilityinthedistributionoffinancialreturnsleadstounderestimationofextremegainsaswellasextremelosses.
Berkowitzetal.
(2011)and
O’BrienandSzerszen
(2017)provideevidenceofneglectedstochasticvolatilityinthebankingcontextbyshowing
thatsimpleGARCHmodelsfittedtobankP&Loftenoutperformbankinternalmodels.ExpressedintermsoftheobservedPITvalues,suchamisspecificationwouldproducetoofewmiddlingPITandtoomanylowandhighPIT.Thus,eveniftheregulatorisconcernedonlywithlargelosses,akernelthatassignsnoweighttothelowertailofthePITdistributionfailstocapturedatathatmayberelevanttodetectingmisspecificationintheuppertail.
Weshowhowtheregulatorcanpre-processthePITvalues,byanoperationwedescribeasfolding,sothattailvaluesfromleftandrightintheoriginalPITdistributionaremappedtotheuppertailofthepre-processeddistributionwithoutalteringthedistributionoftheteststatisticunderthenullhypothesis.
Asimpleexampleofasuitablepre-processorwouldapplythev-shapedmappingT(u)=|1?2u|tothePITvalues.Underthismapping,theeventthatapre-processedPITvalueisintheuppertail,T(PIT)∈[v,1],isequivalenttotheeventthatthePITliesinaunionofintervalsinbothtails,{PIT∈[0,(1?v)/2]∪[(1+v)/2,1]}.ItisstraightforwardtoseethatifthePITareinfactuniformlydistributed(asunderthenullhypothesisofthebacktest)thenthetransformedPITareuniformlydistributedaswell.ThelinearsymmetricmappingT(u)=|1?2u|isonlyasingleexampleofaverylargeclassofuniformdistributionpreserving
5
(u.d.p.)transformations.Acommonfindingintheempiricalliteratureisthatthedistribu-
tionofmarketreturnsisasymmetricsuchthatthetailoflargelossesisheavierthanthetailoflargegains,aphenomenonthatledtothedevelopmentofasymmetricGARCH-typemodelsincorporatingbothleverageeffectsandskewedinnovationdistributions,including
AGARCH(Engle,
1990),EGARCH(Nelson,
1991)andGJR-GARCH(Glostenetal.,
1993)
.Weshowthatasymmetricmembersoftheu.d.p.classcanbechosentohighlightmodelskewnessaswellaskurtosis.
InSection
2,weextendthebacktestingframeworkof
GordyandMcNeil
(2020)toal
-lowforunboundedkernelsandu.d.p.foldingtransformations.Akeyresultdemonstratesthatfoldingisnotredundant,i.e.,pre-processingdeliversbackteststhatcannototherwisebeobtained.InSection
3
weintroducetwonovelfamiliesofunboundedkernels.MonteCarlosimulationsdemonstratethatthesekernelsdeliverbackteststhatarewell-sizedandhighlysensitivetounmodelledkurtosis.Aparsimoniousbutflexiblefamilyofv-shapedpre-processorsisintroducedinSection
4.
MonteCarlosimulationsshowhowpre-processingfurtherhighlightsunmodelledkurtosis.Pre-processorscanbeeffectiveaswellinthepres-enceofunmodelledskewness.However,intheabsenceofmaterialexcesskurtosis,apoorlychosenpre-processorcanmaskratherthanenhancethesignatureofmodelmisspecificaton.Section
5
offersguidanceonimplementationinpracticalsettings.
2Extendedspectralbacktesting
2.1Backtestingset-up
Weassumethataforecastermodelsportfoliolosses(Lt)onafilteredprobabilityspace(?,F,(Ft)t∈N0,P)whereFtrepresentstheinformationavailabletotheforecasterattimet,N0=N∪{0}andNdenotesthenon-zeronaturalnumbers
.1
Foranytimet∈N,thelossLtisanFt-measurablerandomvariablewithconditionaldistributionfunction(df)givenby
1LtisthenegativevalueofP&L,solargelossesareassociatedwiththerighttailofthedistribution.
6
Ft(x)=P(Lt≤x|Ft?1).Inmostapplicationsthisdistributionisnottime-invariant,duetoserialdependenciesin(Lt)andchangesinthecompositionoftheportfolioovertime.
AttimettheforecasterbuildsamodelF-tofFtbasedontheinformationFt?1.PIT-valuesaretherandomvariablesobtainedbysettingPt=.Ifthemodelsformasequenceofidealprobabilisticforecastsinthesenseof
Gneitingetal.
(2007),i.e.,coinciding
withtheconditionallawsFtofLtforeveryt,thentheresultof
Rosenblatt
(1952)implies
thattheprocess(Pt)isasequenceofiidstandarduniformvariables.PIT-valuescontaininformationaboutexceedancesofquantileestimatesatanylevelu:ifu,t=denotestheestimateoftheu-quantileofFtcalculatedusingthegeneralizedinverseofF-tatprobabilitylevelu,thenPt≥u??Lt≥u,t.
Weadoptthepositionofanexternalmodelvalidator,suchasaregulator,whousesthePIT-values(Pt)totakeadecisiononthequalityoftheforecastingmethodology.Forthepurposesofthispaper,weassumethatthevalidatorhasaccessonlytothesePITvaluesalthoughthisrestrictioncouldberelaxedconsiderably.WhatisessentialisthatthevalidatordoesnotobservetheentiredistributionF-twhichreflectstherealityofmostregulatoryregimes.Further,forbrevity,weconsideronlytestsofunconditionalcoverage.Applicationofunboundedmeasuresandfoldingpre-processorswouldapplywithoutcomplicationtothetestsofconditionalcoveragedescribedin
GordyandMcNeil
(2020)
.
2.2Spectralbacktests
ThemodelvalidatoremploysaspectraltransformationofthePITvaluesoftheform
Wt={T(Pt)≥u}dν(u)(1)
where(i)νisaLebesgue-Stieltjesmeasurereferredtoasthekernelmeasureand(ii)T:I→Iisauniformdistributionpreserving(u.d.p.)transformation;ifU~U(0,1)isastandarduniformrandomvariableandTau.d.p.transformation,thenT(U)~U(0,1).Throughout
7
thepaper,Idenotestheunitinterval[0,1].
In
GordyandMcNeil
(2020)themeasure
νwasrestrictedtobeaprobabilitymeasureandthetransformationTwassimplytheidentitytransformationT(v)=v.Thisset-upwasappropriateforafocusontherighttailoftheforecastdistribution.BylookingatPITexceedancesoflevelsuandusingtheprobabilitymeasureνtoselectandweightlevelsofinterestuattheupperendoftheunitinterval,teststatisticswerederivedthatthatweresensitivetoforecastmodelspecificationatarangeofquantilesintherighttail.
WithanyLebesgue-StieltjesmeasureνondomainI,thereisanassociatedincreasingright-continuousfunctionGν,referredtoasadistributionfunction(df),suchthatν([0,u])=Gν(u).
Itiseasilyseenthat(1)isequivalenttotheclosed-formexpression
Wt=ν([0,T(Pt)])=Gν(T(Pt))(2)
whichshowsthatWtisincreasinginT(Pt).Notethatweemploydfinageneralizedsense,sinceGνisaprobabilitydfonlyiflimu→1Gν(u)=1.Tostreamlinethepresentation,wewillhenceforthimposethefollowingmildregularityconditiononν.
Assumption1.Gνhasatmostafinitesetofdiscontinuitiesandisotherwiseabsolutelycontinuous.
Theunivariatetransformationextendsnaturallytothemultivariatecaseinwhichasetofdistinctkernelmeasuresν1,...,νmisappliedtoPIT-valuestoobtainthevector-valuedvariablesW1...,Wnwhere
Wt=(Wt,1,...,Wt,m)′,Wt,j=νj([0,T(Pt)])=Gj(T(Pt)),j=1,...,m.(3)
WerefertoanybacktestbasedonW1...,Wnasaspectralbacktest.Thenullhypothesisaddressedbyanunconditionalspectralbacktestis
H0:Wt~F(4)
8
whereFdenotesthedfofWtwhenPtisuniform.In
GordyandMcNeil
(2020)twotypes
oftestswereconsidered:spectralZ-testsbasedoncentrallimittheoremargumentsandspectrallikelihood-ratiotests(LR-tests).Theresultsshowedanumberofadvantagesoftheformeroverthelatter,includingbettercontrolofsizeforsimilarorsuperiorpower,easeofimplementationandspeedofexecution.InthispaperwefocusonZ-testsandprovidethenecessaryextensionofthetheorytotheLebesgue-Stieltjescase
.2
WhendimWt=maspectralZ-testisbasedonthefactthatunderthemultivariate
CLT√wheren=n?1Σ1WtandμWandΣWarethe
meanvectorandcovariancematrixofthenulldistributionF.Henceatestcanbebasedonassumingforlargeenoughnthat
Tn=n(Wn?μW)′Σ1(Wn?μW)~χ,(5)
wherewerefertoTnasanm-spectralZ-teststatistic.Whenm=1thechi-squaredtestisequivalenttoatwo-sidedtestbasedon
whereμW=E(Wt)andσ=var(Wt)arethemomentsinthenullmodelFforWt.
Bydefinition,theu.d.p.transformationT(P)doesnotalterthemomentsofPunderthenullhypothesis.Thus,asin
GordyandMcNeil
(2020),thefirstmoment
μWofthetransformedPIT-valuesWtiseasilyobtainedas
μW=(1?u)dν(u)(7)
ThevarianceσofWtandthecross-momentsinthecovariancematrixΣWofWtare
obtainedusingasimpleproductruleforspectrallytransformedPITvalues.
2ThetheoryofspectralLR-testspresentedin
GordyandMcNeil
(2020)carriesthroughinthemore
generalcasewithouttheneedforanysignificantmodification.
9
Theorem2.1.ThesetofspectrallytransformedPITvaluesdefinedbyWt,j=Gj(T(Pt))isclosedundermultiplication.TheproductWt*=Wt,1Wt,2isgivenbyWt*=G*(T(Pt))whereν*isaLebesgue-StieltjesmeasureandtheassociatedfunctionG*satisfies
Itfollowsthatσ=μW*?μ,whereμW*
isfoundbyapplying(7)underthemeasure
ν*obtainedwhenν1=ν2=ν.Thisyields
μW*=(1?u)(2Gν(u)?ν({u}))dν(u).(8)
ThecentrallimittheoremunderpinningtheZ-testrequiresfinitesecondmoments.Fortheunivariatecase,thefollowingpropositionprovidesasufficientconditiononthetailbehaviorofGν.
Proposition2.2.IfGν(u)=O((1?u)?0.5+?)asu→1forsome?>0,thenσisfinite.
Inthemultivariatesetting,theasymptoticdistributionin(5)holdsiftheconditioninPropo
-sition
2.2
issatisfiedforeachνj,j=1,...,m.
2.3Uniformdistributionpreservingtransformations
Weareinterestedinu.d.p.transformationsTthatcanextendourtestingframeworktouncoverdeficienciesinforecastmodelsthatarenotrevealedbytheidentitytransformation(generaltheoryforu.d.p.transformationscanbefoundin
Porubskyetal.,
1988,among
others).Sincethechoiceofkernelmeasureinourframeworkisquiteflexible,onemightaskwhethertheinsertionofanygivenu.d.p.transformationT
in(1)deliversanewZ-testthat
couldnotbeobtainedbychangingthekernelmeasure.
Tothisendweintroducetheconceptofredundancyinthetestframework.Letμandσbethemomentsassociatedwithkernelν.Wesaythatau.d.p,transformationTisredundant
10
forkernelνifthereexistsanotherkernelwithmomentsandthatalwaysdeliversthe
samemagnitude|Zn|
forthetest-statisticin(6)
.Thatis,let{P1,...,Pn}beanarbitrarysampleofPITvalues,andletThenTisredundantif
almostsurely.
Asasimpleexample,considertheu.d.p.transformationT(v)=1?v.
Lemma2.3.Theu.d.p.transformationT(v)=1?visredundantforanyboundedmeasureνandnotredundantforanyunboundedmeasureν.
Furtherexamplesofnon-redundanttransformationsareobtainedbyconsideringu.d.p.transformationsthatarefolding.BythiswemeantransformationsTforwhichalmostallvaluesu∈Iareassociatedwithmultiplevaluesinthepreimageof{u}underT.Tomakethispreciseweintroducesomeadditionalnotationandgiveadefinition.Foragenericfunctionf:D→YandforasetD1?Dwewritef[D1]tomeantheimageofD1underf;similarly,forasetY1?Y,f?1[Y1]isthepreimageofY1underf.
Definition2.4.Forau.d.p.transformationT:I→IletIT?IbethesetdefinedbyIT={u|card(T?1[{u}])≥2}.TisfoldingifIThasLebesguemeasureone.
Forexample,theu.d.p.transformationT(v)=|1?2v|hasIT=I\{0.5}andisclearlyfolding.Thefoldingclassincludesv-shaped,m-shaped,w-shapedandmoregeneralsaw-shapedfunctions.Ourgeneralresultforthefoldingclassis
Proposition2.5.LetνbeameasureforwhichGνisstrictlyincreasingonasub-intervalofI.IfTisafoldingu.d.p.transformationthenitisnotredundantforν.
Theintuitionisthatanduppertailobservationscontributeinoppositesigns(therebyoffsettingoneanother)inthesampleteststatistic.Bycontrast,whenwepre-processthePITvalueswithafolding
11
u.d.p.transformation,Gν(T(P))cannotbemonotonicinP.PITvaluesfromnon-contiguousregionsoftheunitintervalwillmaptothesamevalueofGν(T(P)).WhichPITobservations
contributeinthesamesignandwhichoffseteachotherdependsontheshapeofthepre-processor.
3TwofamiliesofLebesgue-Stieltjeskernels
Weconsidersomepossibilitiesfornovelkernelswhicharenotnecessarilyprobabilitymea-sures.FornotationalsimplicitywepresentthetheoryforthecasewhereTistheidentitytransformation.
Fortheremainderofthepaper,thetestsweconsiderarebasedondfsGνwithdensitiesgνsatisfyinggν(u)>0forα1<u<α2andgν(u)=0foru<α1andu>α2.Incertaincasesweallowformassattheboundaries,i.e.,ν({αi})≥0.Werefertotheinterval[α1,α2]asthekernelwindow.
Remark3.1.Forunboundedmeasures,wehaveGν(u)→∞asu→α2.Insuchcases,onlyα2=1isadmissible.Werewetochooseα2<1,wewouldhavePr(α2<Pt≤1)=(1?α2)>0underthenullhypothesis,sothefirstmomentμWwouldbeinfinite.
3.1Simplekernelsofpowerform
GordyandMcNeil
(2020)observethatthebeta-typedensity
(u?α1)a?1(α2?u)b?1providesaflexibleyetparsimoniousandtractableformforthedensityofGν.Sincethatpaperrestrictedνtothesetofprobabilitymeasures,itwasnecessarytorestricta>0,b>0andtoregularizethekernelbythebetafunctionB(a,b).Herewerelaxtherestrictiononbanddiscardtheregularization.
Foruintheunitinterval,letB(u;a,b)denotethe(unregularized)incompletebetafunc-tion
B(u;a,b)=xa?1(1?x)b?1dx.(9)
12
Wedefinethebetakernelνviathedf
Thiskernelispurelycontinuous,i.e.,ν({α1})=ν({α2})=0.Whenb>0,B(u;a,b)isboundedfromabovebyB(a,b)soWt=Gν(Pt)certainlyhasfinitemoments.However,whenb≤0,B(u;a,b)isunboundedasu→1and,byRemark
3.1,wehavetoset
α2=1.Moreover,theexistenceofmomentshastobecheckedwiththehelpofProposition
2.2
andthefollowingresult.
Proposition3.2.Asu→1,
(
IncombinationwithProposition
2.2,itfollowsthat
Wt=Gν(Pt)hasfinitefirstandsecondmomentsifandonlyifb>?1/2.Inthecaseb=0wenotethat
?ln(1?u)=O((1?u)k),u→1,(10)
foranyk<0,afactthatisusedanumberoftimesinthefollowingsections.Theb=0caseisparticularlyimportantforpracticalapplication.Forsmall|b|,standardalgorithmsforB(u;a,b)maybenumericallyunstableforunear1.However,forb=0,
González-Santander
(2021
,Theorem1)providesafiniteseriesexpansioninelementaryfunctions.
WeperformMonteCarloanalysestoexplorehowthesizeandpowerofspectralbacktestswithbeta-typekernelsdependonthebetaparameters(a,b).WeconsiderfourdifferentchoicesforthedfFofthetruemodelofLt:thestandardnormal,andthescaledt10,scaledt5andscaledt3.TheStudenttdistributionsarescaledtohavevarianceonesodifferencesstemfromdifferenttailshapesratherthandifferentvariances.Wetaketheforecaster’s
13
modelF-tobethestandardnormal,i.e.,wetransformthesampledLttoPIT-valuesasPt=Φ(Lt).Therefore,whenthesamplesofLtaredrawnfromthestandardnormal,thePIT-valuesareuniformlydistributedandareusedtoevaluatethesizeofthetests.ThePITsamplesarisingfromtheStudenttdistributionsshowthekindofdeparturesfromuniformitythatareobservedwhentheforecaster’smodelistoothin-tailed.
Wefixakernelwindowof[α1,1]forα1=0.975.Oursamplesizeisfixedton=500correspondingtotwo-yearsamplesoftradingdayreturns.Ourtablesreportthepercentageofrejectionsofthenullhypothesisatthe5%confidencelevelbasedon216=65,536replications.Allreportedp-valuesarebasedontwo-sidedtests.
Parameters
(1,1)
(2,1)
(1,1/4)
(1,1/8)
(1,0)
(2,0)
(5,0)
Normal
4.7%
4.6%
4.6%
4.5%
4.4%
4.3%
4.9%
Scaledt10
13.7%
19.4%
24.1%
28.6%
34.2%
40.8%
45.1%
Scaledt5
21.2%
34.0%
45.7%
55.0%
64.6%
72.2%
76.4%
Scaledt3
13.1%
28.7%
46.5%
61.3%
75.0%
82.2%
86.5%
Table1:Sizeandpoweroftestsbasedonbetamonokernels.
Kernelwindowis[0.975,1].2^16trialswith500observationspertrial.
ResultsforunivariatebetakernelsarereportedinTable
1.
Forallsetsofbetaparameters,testsarewell-sized.ForeachalternativetruemodelF,wefindthatpowerincreasesasbdeclinesandaincreases.Themagnitudeoftheeffectisextremelylarge.Forexample,againstthescaledt3alternative,therejectionrateincreasesfrom13.1%fortheuniform(beta(1,1))kernelto75.0%forthebeta(1,0)to86.5%forthebeta(5,0).ThispatternisconfirmedacrossafinergridofbetaparametersforthecaseoftheStudentt5inFigure
1.
Tounderstandthispattern,observethatforanytwoPITvaluesα1<p1<p2<1,theratioofthebetakernelsgν(p2)/gν(p1)decreasesinbandincreasesina.Thehigherthisratio,thegreatertheweightinthetestonPITintheneighborhoodofp2relativetoPITintheneighborhoodofp1.AsshowninFigure
2,withinthekernelwindowof[0.975,1],the
distributionsofPITunderthescaledStudenttalternativesdiffermostfromthedistributionunderthenull(greensolidline)aswemovedeeperintothetail.Thus,wegenerallyexpect
14
RejectionRate(logscale)
0.5
0.3
0.1
02468
a
b
0
0.51
248
Figure1:Poweroftestsbasedonbetamonokernelsagainstscaledt5alternative.Kernelwindowis[0.975,1].2^16trialswith500observationspertrial.
teststhatweightmoreheavilyontheright-handtailtodeliverhigherpower.
ResultsforbivariatebetakernelsarereportedinTable
2.
GordyandMcNeil
(2020)
demonstratedthatbikerneltestsaregenerallymorepowerfulthanmonokerneltestswhenthecomponentkernelsofthebivariatetestemphasizeoppositeendsofthekernelsupport.Putanotherway,thelowerthec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋面臨時防護網(wǎng)施工方案
- 青島pe給水管施工方案
- 賀利氏光伏銀漿事業(yè)部資產(chǎn)組市場價值資產(chǎn)評估報告
- 山東防腐木陽臺施工方案
- 2025年活性白土項目發(fā)展計劃
- 弘景光電:公司財務報表及審閱報告(2024年1月-12月)
- 老舊房屋維修改造施工方案
- 2024-2025學年下學期高一語文第五單元A卷
- 修繕工程中的防水技術方案
- 鄉(xiāng)村產(chǎn)業(yè)與城市融合發(fā)展路徑
- 直流充電樁培訓
- 《小麻雀》(課件)西師大版音樂二年級上冊
- 《民航安全檢查(安檢技能實操)》課件-第七章 人身檢查
- GB/T 44768-2024配電網(wǎng)線損理論計算導則
- 危險品車輛安全運輸安全生產(chǎn)值班制度(3篇)
- 模塊一 銀河麒麟桌面操作系統(tǒng)
- 灼口綜合征中醫(yī)治療
- 光伏發(fā)電站項目安全技術交底資料
- DB11∕693-2017 建設工程臨建房屋技術標準
- GB/T 15822.2-2024無損檢測磁粉檢測第2部分:檢測介質(zhì)
- 一次性社保補償協(xié)議書范本
評論
0/150
提交評論