美聯(lián)儲-光譜回溯測試無界和折疊 Spectral backtests unbounded and folded 2024_第1頁
美聯(lián)儲-光譜回溯測試無界和折疊 Spectral backtests unbounded and folded 2024_第2頁
美聯(lián)儲-光譜回溯測試無界和折疊 Spectral backtests unbounded and folded 2024_第3頁
美聯(lián)儲-光譜回溯測試無界和折疊 Spectral backtests unbounded and folded 2024_第4頁
美聯(lián)儲-光譜回溯測試無界和折疊 Spectral backtests unbounded and folded 2024_第5頁
已閱讀5頁,還剩82頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

FinanceandEconomicsDiscussionSeries

FederalReserveBoard,Washington,D.C.

ISSN1936-2854(Print)

ISSN2767-3898(Online)

Spectralbacktestsunboundedandfolded

MichaelB.GordyandAlexanderJ.McNeil

2024-060

Pleasecitethispaperas:

Gordy,MichaelB.,andAlexanderJ.McNeil(2024).“Spectralbacktestsunboundedandfolded,”FinanceandEconomicsDiscussionSeries2024-060.Washington:BoardofGover-norsoftheFederalReserveSystem,

/10.17016/FEDS.2024.060

.

NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.

1

Spectralbacktestsunboundedandfolded*

MichaelB.Gordy

FederalReserveBoard,WashingtonDC

AlexanderJ.McNeil

SchoolforBusinessandSociety,UniversityofYork

15July2024

Abstract

Inthespectralbacktestingframeworkof

GordyandMcNeil

(2020)aprobability

measureontheunitintervalisusedtoweightthequantilesofgreatestinterestinthevalidationofforecastmodelsusingprobability-integraltransform(PIT)data.WeextendthisframeworktoallowgeneralLebesgue-Stieltjeskernelmeasureswithun-boundeddistributionfunctions,whichbringspowerfulnewtestsbasedontruncatedlocation-scalefamiliesintothespectralclass.Moreover,byconsideringuniformdistri-butionpreservingtransformationsofPITvaluesthetestframeworkisgeneralizedtoallowteststhatarefocusedonbothtailsoftheforecastdistribution.

JELCodes:C52;G21;G32

Keywords:Backtesting;Volatility;Riskmanagement

*Theopinionsexpressedhereareourown,anddonotreflecttheviewsoftheBoardofGovernorsoritsstaff.AddresscorrespondencetoAlexanderJ.McNeil,UniversityofYork,alexander.mcneil@york.ac.uk.

2

1Introduction

GordyandMcNeil

(2020)studyaclassofbacktestsforforecastdistributionsinwhichthetest

statisticdependsonaspectraltransformationofaquantileexceedanceindicatorfunction.Thespectraltransformationweightsquantileexceedanceeventsusingakernelmeasurewhichischosenbythevalidatortoreflectthevalidator’sprioritiesformodelperformance.Thepresentpaperextendstheoriginaltreatmentintwodirections.First,whereas

Gordyand

McNeil

(2020)restrictthekernelmeasuretotheclassofprobabilitymeasures,inthispaper

weallowthekernelmeasuretobeunbounded,subjecttoanintegrabilitycondition.Weshowthatunboundedkernelsdelivertestsmateriallymorepowerfulthantestsbasedontheboundedkernelsstudiedby

GordyandMcNeil

(2020)

.Second,weintroduceapre-processingofthedatabyafoldingtransformationthatleavesthesizeofthebacktestunalteredbutincreasesitspoweragainstmisspecificationsofforecastvolatilitythatareextremelycommoninpractice.

Ourextensionstothespectralbacktestingframeworkaregermanetoanyvalidationexerciseinwhichperformancethroughoutoneorbothtailsoftheforecastdistributionisofspecialinterest.Ourinvestigationismotivatedbyrecentdevelopmentsinthecapitalregulationofthetradingoperationsoflargebanks.

UnderthecurrentBaselIIIrules(Basel

CommitteeonBankSupervision,

2019),minimumcapitalrequirementsforabank’strading

bookaredeterminedbythebank’sself-reporteddailyExpectedShortfall(ES)attheα1=97.5%confidencelevel.TheadoptionofESdepartsfromearlierBaselregimestiedtoValue-at-Risk(VaR)attheα*=99%confidencelevel.LeftunchangedinBaselIIIistheroleoftheregulatorinvalidationofthebank’smodelthroughbacktesting.Forthispurpose,banksintheUnitedStatesreporttoregulatorsforeachtradingdaytheprobabilityassociatedwiththerealizedprofit-and-loss(P&L)inthepriorday’sforecastdistribution,i.e.,theprobabilityintegraltransform(PIT)associatedwithrealizedP&L.ObservingthePITvaluesisequivalenttoobservingVaRexceedancesateverylevelα∈[0,1].Besides

GordyandMcNeil

(2020),bank-reportedPITdatahavebeenstudiedby

Lynchetal.

(2023)

3

and

Iercosanetal.

(2023)

.

UnderaVaR-basedregime,theregulatorwouldhaveparticularinterestintestingmodelperformanceoversomerangeofconfidencelevelsintheneighborhoodofα*.Accordingly,

GordyandMcNeil

(2020)illustratetheirmethodswithkernelsplacingmassinawindow

[α1,α2]with0<α1<α*<α2<1,e.g.,[0.985,0.995].Insuchasetting,onlyboundedmeasuresproducefiniteteststatistics,andsinceourteststatisticisinvarianttothemeasureofthewindow,withoutlossofgeneralitywecanrestrictattentiontoprobabilitymeasures.BecauseESisanintegralofVaRaboveathresholdlevel,itisnaturalunderthenewregimetoconsidercontinuouskernelsthatweightoneveryαabovesomethreshold,e.g.,α1=0.975intheBaselcontext.Inthissetting,evensomeunboundedmeasurescanbeguaranteedtoyieldvalidteststatistics.Further,becausebankmodelstendtobreakdownunderextrememarketeventsandunboundedmeasuresweightmostheavilyonsuchtailevents,weexpectunboundedmeasurestodelivermorepowerfultests.Weconfirmthisintuitioninsimulationexercisesandshowaswellthatthispowerdoesnotcomeattheexpenseofsizedistortions.

Thetopicofbacktestingexpectedshortfallhasledtoalivelydebateaboutwhether

ornotESisamenabletobacktesting(Gneiting,

2011;

AcerbiandSzékely,

2014;

Fissleret

al.

,

2016;

AcerbiandSzékely,

2023)

.Agrowingliterature,including

Pattonetal.

(2019)

and

Barendseetal.

(2023),employselicitabilitytheorytodevelopjointbacktestsofVaR

andES.Forregulatoryuse,thismethodologywouldgenerallyrequirethatbankssubmittimeseriesofbothVaRandESestimates,althougharecentpaperof

BayerandDimitriadis

(2022)suggestsaworkaroundtoobtainatestofESestimatesonly,atthepossibleexpense

ofsomemodelmisspecification.

IssuesrelatedtobacktestingestimatesofriskmeasuressuchasESaresidesteppedinourframeworkbecausewetesttheforecastdistributionsfromwhichriskmeasuresareestimated,ratherthantheestimatesthemselves.ItmaybenotedthatanumberofrecentpapersproposePIT-basedapproachestobacktestingexpectedshortfalland,inparticular,exploitthecumulativeviolationprocessof

DuandEscanciano

(2017),whichcanbeviewedasa

4

particularchoiceofspectraltransformation.Theseinclude

Duetal.

(2023),whoproposean

improvedconditionalESbacktest,

HogaandDemetrescu

(2023),whoproposeareal-time

monitoringprocedureforESforecastsand

Huéetal.

(2024)whouseorthogonalpolynomials

tojointlytestmomentconditionsforthecumulativeviolationprocessandtheprocessofdurationsbetweenVaRexceedances.

EveniftheregulatorisinterestedexclusivelyintheuppertailofthePITdistribution,itisoftenthecasethatmodelsthataremisspecifiedintheuppertailmaybesimilarlymisspecifiedinthelowertail.Forexample,inariskmanagementsetting,afailuretocapturestochasticvolatilityinthedistributionoffinancialreturnsleadstounderestimationofextremegainsaswellasextremelosses.

Berkowitzetal.

(2011)and

O’BrienandSzerszen

(2017)provideevidenceofneglectedstochasticvolatilityinthebankingcontextbyshowing

thatsimpleGARCHmodelsfittedtobankP&Loftenoutperformbankinternalmodels.ExpressedintermsoftheobservedPITvalues,suchamisspecificationwouldproducetoofewmiddlingPITandtoomanylowandhighPIT.Thus,eveniftheregulatorisconcernedonlywithlargelosses,akernelthatassignsnoweighttothelowertailofthePITdistributionfailstocapturedatathatmayberelevanttodetectingmisspecificationintheuppertail.

Weshowhowtheregulatorcanpre-processthePITvalues,byanoperationwedescribeasfolding,sothattailvaluesfromleftandrightintheoriginalPITdistributionaremappedtotheuppertailofthepre-processeddistributionwithoutalteringthedistributionoftheteststatisticunderthenullhypothesis.

Asimpleexampleofasuitablepre-processorwouldapplythev-shapedmappingT(u)=|1?2u|tothePITvalues.Underthismapping,theeventthatapre-processedPITvalueisintheuppertail,T(PIT)∈[v,1],isequivalenttotheeventthatthePITliesinaunionofintervalsinbothtails,{PIT∈[0,(1?v)/2]∪[(1+v)/2,1]}.ItisstraightforwardtoseethatifthePITareinfactuniformlydistributed(asunderthenullhypothesisofthebacktest)thenthetransformedPITareuniformlydistributedaswell.ThelinearsymmetricmappingT(u)=|1?2u|isonlyasingleexampleofaverylargeclassofuniformdistributionpreserving

5

(u.d.p.)transformations.Acommonfindingintheempiricalliteratureisthatthedistribu-

tionofmarketreturnsisasymmetricsuchthatthetailoflargelossesisheavierthanthetailoflargegains,aphenomenonthatledtothedevelopmentofasymmetricGARCH-typemodelsincorporatingbothleverageeffectsandskewedinnovationdistributions,including

AGARCH(Engle,

1990),EGARCH(Nelson,

1991)andGJR-GARCH(Glostenetal.,

1993)

.Weshowthatasymmetricmembersoftheu.d.p.classcanbechosentohighlightmodelskewnessaswellaskurtosis.

InSection

2,weextendthebacktestingframeworkof

GordyandMcNeil

(2020)toal

-lowforunboundedkernelsandu.d.p.foldingtransformations.Akeyresultdemonstratesthatfoldingisnotredundant,i.e.,pre-processingdeliversbackteststhatcannototherwisebeobtained.InSection

3

weintroducetwonovelfamiliesofunboundedkernels.MonteCarlosimulationsdemonstratethatthesekernelsdeliverbackteststhatarewell-sizedandhighlysensitivetounmodelledkurtosis.Aparsimoniousbutflexiblefamilyofv-shapedpre-processorsisintroducedinSection

4.

MonteCarlosimulationsshowhowpre-processingfurtherhighlightsunmodelledkurtosis.Pre-processorscanbeeffectiveaswellinthepres-enceofunmodelledskewness.However,intheabsenceofmaterialexcesskurtosis,apoorlychosenpre-processorcanmaskratherthanenhancethesignatureofmodelmisspecificaton.Section

5

offersguidanceonimplementationinpracticalsettings.

2Extendedspectralbacktesting

2.1Backtestingset-up

Weassumethataforecastermodelsportfoliolosses(Lt)onafilteredprobabilityspace(?,F,(Ft)t∈N0,P)whereFtrepresentstheinformationavailabletotheforecasterattimet,N0=N∪{0}andNdenotesthenon-zeronaturalnumbers

.1

Foranytimet∈N,thelossLtisanFt-measurablerandomvariablewithconditionaldistributionfunction(df)givenby

1LtisthenegativevalueofP&L,solargelossesareassociatedwiththerighttailofthedistribution.

6

Ft(x)=P(Lt≤x|Ft?1).Inmostapplicationsthisdistributionisnottime-invariant,duetoserialdependenciesin(Lt)andchangesinthecompositionoftheportfolioovertime.

AttimettheforecasterbuildsamodelF-tofFtbasedontheinformationFt?1.PIT-valuesaretherandomvariablesobtainedbysettingPt=.Ifthemodelsformasequenceofidealprobabilisticforecastsinthesenseof

Gneitingetal.

(2007),i.e.,coinciding

withtheconditionallawsFtofLtforeveryt,thentheresultof

Rosenblatt

(1952)implies

thattheprocess(Pt)isasequenceofiidstandarduniformvariables.PIT-valuescontaininformationaboutexceedancesofquantileestimatesatanylevelu:ifu,t=denotestheestimateoftheu-quantileofFtcalculatedusingthegeneralizedinverseofF-tatprobabilitylevelu,thenPt≥u??Lt≥u,t.

Weadoptthepositionofanexternalmodelvalidator,suchasaregulator,whousesthePIT-values(Pt)totakeadecisiononthequalityoftheforecastingmethodology.Forthepurposesofthispaper,weassumethatthevalidatorhasaccessonlytothesePITvaluesalthoughthisrestrictioncouldberelaxedconsiderably.WhatisessentialisthatthevalidatordoesnotobservetheentiredistributionF-twhichreflectstherealityofmostregulatoryregimes.Further,forbrevity,weconsideronlytestsofunconditionalcoverage.Applicationofunboundedmeasuresandfoldingpre-processorswouldapplywithoutcomplicationtothetestsofconditionalcoveragedescribedin

GordyandMcNeil

(2020)

.

2.2Spectralbacktests

ThemodelvalidatoremploysaspectraltransformationofthePITvaluesoftheform

Wt={T(Pt)≥u}dν(u)(1)

where(i)νisaLebesgue-Stieltjesmeasurereferredtoasthekernelmeasureand(ii)T:I→Iisauniformdistributionpreserving(u.d.p.)transformation;ifU~U(0,1)isastandarduniformrandomvariableandTau.d.p.transformation,thenT(U)~U(0,1).Throughout

7

thepaper,Idenotestheunitinterval[0,1].

In

GordyandMcNeil

(2020)themeasure

νwasrestrictedtobeaprobabilitymeasureandthetransformationTwassimplytheidentitytransformationT(v)=v.Thisset-upwasappropriateforafocusontherighttailoftheforecastdistribution.BylookingatPITexceedancesoflevelsuandusingtheprobabilitymeasureνtoselectandweightlevelsofinterestuattheupperendoftheunitinterval,teststatisticswerederivedthatthatweresensitivetoforecastmodelspecificationatarangeofquantilesintherighttail.

WithanyLebesgue-StieltjesmeasureνondomainI,thereisanassociatedincreasingright-continuousfunctionGν,referredtoasadistributionfunction(df),suchthatν([0,u])=Gν(u).

Itiseasilyseenthat(1)isequivalenttotheclosed-formexpression

Wt=ν([0,T(Pt)])=Gν(T(Pt))(2)

whichshowsthatWtisincreasinginT(Pt).Notethatweemploydfinageneralizedsense,sinceGνisaprobabilitydfonlyiflimu→1Gν(u)=1.Tostreamlinethepresentation,wewillhenceforthimposethefollowingmildregularityconditiononν.

Assumption1.Gνhasatmostafinitesetofdiscontinuitiesandisotherwiseabsolutelycontinuous.

Theunivariatetransformationextendsnaturallytothemultivariatecaseinwhichasetofdistinctkernelmeasuresν1,...,νmisappliedtoPIT-valuestoobtainthevector-valuedvariablesW1...,Wnwhere

Wt=(Wt,1,...,Wt,m)′,Wt,j=νj([0,T(Pt)])=Gj(T(Pt)),j=1,...,m.(3)

WerefertoanybacktestbasedonW1...,Wnasaspectralbacktest.Thenullhypothesisaddressedbyanunconditionalspectralbacktestis

H0:Wt~F(4)

8

whereFdenotesthedfofWtwhenPtisuniform.In

GordyandMcNeil

(2020)twotypes

oftestswereconsidered:spectralZ-testsbasedoncentrallimittheoremargumentsandspectrallikelihood-ratiotests(LR-tests).Theresultsshowedanumberofadvantagesoftheformeroverthelatter,includingbettercontrolofsizeforsimilarorsuperiorpower,easeofimplementationandspeedofexecution.InthispaperwefocusonZ-testsandprovidethenecessaryextensionofthetheorytotheLebesgue-Stieltjescase

.2

WhendimWt=maspectralZ-testisbasedonthefactthatunderthemultivariate

CLT√wheren=n?1Σ1WtandμWandΣWarethe

meanvectorandcovariancematrixofthenulldistributionF.Henceatestcanbebasedonassumingforlargeenoughnthat

Tn=n(Wn?μW)′Σ1(Wn?μW)~χ,(5)

wherewerefertoTnasanm-spectralZ-teststatistic.Whenm=1thechi-squaredtestisequivalenttoatwo-sidedtestbasedon

whereμW=E(Wt)andσ=var(Wt)arethemomentsinthenullmodelFforWt.

Bydefinition,theu.d.p.transformationT(P)doesnotalterthemomentsofPunderthenullhypothesis.Thus,asin

GordyandMcNeil

(2020),thefirstmoment

μWofthetransformedPIT-valuesWtiseasilyobtainedas

μW=(1?u)dν(u)(7)

ThevarianceσofWtandthecross-momentsinthecovariancematrixΣWofWtare

obtainedusingasimpleproductruleforspectrallytransformedPITvalues.

2ThetheoryofspectralLR-testspresentedin

GordyandMcNeil

(2020)carriesthroughinthemore

generalcasewithouttheneedforanysignificantmodification.

9

Theorem2.1.ThesetofspectrallytransformedPITvaluesdefinedbyWt,j=Gj(T(Pt))isclosedundermultiplication.TheproductWt*=Wt,1Wt,2isgivenbyWt*=G*(T(Pt))whereν*isaLebesgue-StieltjesmeasureandtheassociatedfunctionG*satisfies

Itfollowsthatσ=μW*?μ,whereμW*

isfoundbyapplying(7)underthemeasure

ν*obtainedwhenν1=ν2=ν.Thisyields

μW*=(1?u)(2Gν(u)?ν({u}))dν(u).(8)

ThecentrallimittheoremunderpinningtheZ-testrequiresfinitesecondmoments.Fortheunivariatecase,thefollowingpropositionprovidesasufficientconditiononthetailbehaviorofGν.

Proposition2.2.IfGν(u)=O((1?u)?0.5+?)asu→1forsome?>0,thenσisfinite.

Inthemultivariatesetting,theasymptoticdistributionin(5)holdsiftheconditioninPropo

-sition

2.2

issatisfiedforeachνj,j=1,...,m.

2.3Uniformdistributionpreservingtransformations

Weareinterestedinu.d.p.transformationsTthatcanextendourtestingframeworktouncoverdeficienciesinforecastmodelsthatarenotrevealedbytheidentitytransformation(generaltheoryforu.d.p.transformationscanbefoundin

Porubskyetal.,

1988,among

others).Sincethechoiceofkernelmeasureinourframeworkisquiteflexible,onemightaskwhethertheinsertionofanygivenu.d.p.transformationT

in(1)deliversanewZ-testthat

couldnotbeobtainedbychangingthekernelmeasure.

Tothisendweintroducetheconceptofredundancyinthetestframework.Letμandσbethemomentsassociatedwithkernelν.Wesaythatau.d.p,transformationTisredundant

10

forkernelνifthereexistsanotherkernelwithmomentsandthatalwaysdeliversthe

samemagnitude|Zn|

forthetest-statisticin(6)

.Thatis,let{P1,...,Pn}beanarbitrarysampleofPITvalues,andletThenTisredundantif

almostsurely.

Asasimpleexample,considertheu.d.p.transformationT(v)=1?v.

Lemma2.3.Theu.d.p.transformationT(v)=1?visredundantforanyboundedmeasureνandnotredundantforanyunboundedmeasureν.

Furtherexamplesofnon-redundanttransformationsareobtainedbyconsideringu.d.p.transformationsthatarefolding.BythiswemeantransformationsTforwhichalmostallvaluesu∈Iareassociatedwithmultiplevaluesinthepreimageof{u}underT.Tomakethispreciseweintroducesomeadditionalnotationandgiveadefinition.Foragenericfunctionf:D→YandforasetD1?Dwewritef[D1]tomeantheimageofD1underf;similarly,forasetY1?Y,f?1[Y1]isthepreimageofY1underf.

Definition2.4.Forau.d.p.transformationT:I→IletIT?IbethesetdefinedbyIT={u|card(T?1[{u}])≥2}.TisfoldingifIThasLebesguemeasureone.

Forexample,theu.d.p.transformationT(v)=|1?2v|hasIT=I\{0.5}andisclearlyfolding.Thefoldingclassincludesv-shaped,m-shaped,w-shapedandmoregeneralsaw-shapedfunctions.Ourgeneralresultforthefoldingclassis

Proposition2.5.LetνbeameasureforwhichGνisstrictlyincreasingonasub-intervalofI.IfTisafoldingu.d.p.transformationthenitisnotredundantforν.

Theintuitionisthatanduppertailobservationscontributeinoppositesigns(therebyoffsettingoneanother)inthesampleteststatistic.Bycontrast,whenwepre-processthePITvalueswithafolding

11

u.d.p.transformation,Gν(T(P))cannotbemonotonicinP.PITvaluesfromnon-contiguousregionsoftheunitintervalwillmaptothesamevalueofGν(T(P)).WhichPITobservations

contributeinthesamesignandwhichoffseteachotherdependsontheshapeofthepre-processor.

3TwofamiliesofLebesgue-Stieltjeskernels

Weconsidersomepossibilitiesfornovelkernelswhicharenotnecessarilyprobabilitymea-sures.FornotationalsimplicitywepresentthetheoryforthecasewhereTistheidentitytransformation.

Fortheremainderofthepaper,thetestsweconsiderarebasedondfsGνwithdensitiesgνsatisfyinggν(u)>0forα1<u<α2andgν(u)=0foru<α1andu>α2.Incertaincasesweallowformassattheboundaries,i.e.,ν({αi})≥0.Werefertotheinterval[α1,α2]asthekernelwindow.

Remark3.1.Forunboundedmeasures,wehaveGν(u)→∞asu→α2.Insuchcases,onlyα2=1isadmissible.Werewetochooseα2<1,wewouldhavePr(α2<Pt≤1)=(1?α2)>0underthenullhypothesis,sothefirstmomentμWwouldbeinfinite.

3.1Simplekernelsofpowerform

GordyandMcNeil

(2020)observethatthebeta-typedensity

(u?α1)a?1(α2?u)b?1providesaflexibleyetparsimoniousandtractableformforthedensityofGν.Sincethatpaperrestrictedνtothesetofprobabilitymeasures,itwasnecessarytorestricta>0,b>0andtoregularizethekernelbythebetafunctionB(a,b).Herewerelaxtherestrictiononbanddiscardtheregularization.

Foruintheunitinterval,letB(u;a,b)denotethe(unregularized)incompletebetafunc-tion

B(u;a,b)=xa?1(1?x)b?1dx.(9)

12

Wedefinethebetakernelνviathedf

Thiskernelispurelycontinuous,i.e.,ν({α1})=ν({α2})=0.Whenb>0,B(u;a,b)isboundedfromabovebyB(a,b)soWt=Gν(Pt)certainlyhasfinitemoments.However,whenb≤0,B(u;a,b)isunboundedasu→1and,byRemark

3.1,wehavetoset

α2=1.Moreover,theexistenceofmomentshastobecheckedwiththehelpofProposition

2.2

andthefollowingresult.

Proposition3.2.Asu→1,

(

IncombinationwithProposition

2.2,itfollowsthat

Wt=Gν(Pt)hasfinitefirstandsecondmomentsifandonlyifb>?1/2.Inthecaseb=0wenotethat

?ln(1?u)=O((1?u)k),u→1,(10)

foranyk<0,afactthatisusedanumberoftimesinthefollowingsections.Theb=0caseisparticularlyimportantforpracticalapplication.Forsmall|b|,standardalgorithmsforB(u;a,b)maybenumericallyunstableforunear1.However,forb=0,

González-Santander

(2021

,Theorem1)providesafiniteseriesexpansioninelementaryfunctions.

WeperformMonteCarloanalysestoexplorehowthesizeandpowerofspectralbacktestswithbeta-typekernelsdependonthebetaparameters(a,b).WeconsiderfourdifferentchoicesforthedfFofthetruemodelofLt:thestandardnormal,andthescaledt10,scaledt5andscaledt3.TheStudenttdistributionsarescaledtohavevarianceonesodifferencesstemfromdifferenttailshapesratherthandifferentvariances.Wetaketheforecaster’s

13

modelF-tobethestandardnormal,i.e.,wetransformthesampledLttoPIT-valuesasPt=Φ(Lt).Therefore,whenthesamplesofLtaredrawnfromthestandardnormal,thePIT-valuesareuniformlydistributedandareusedtoevaluatethesizeofthetests.ThePITsamplesarisingfromtheStudenttdistributionsshowthekindofdeparturesfromuniformitythatareobservedwhentheforecaster’smodelistoothin-tailed.

Wefixakernelwindowof[α1,1]forα1=0.975.Oursamplesizeisfixedton=500correspondingtotwo-yearsamplesoftradingdayreturns.Ourtablesreportthepercentageofrejectionsofthenullhypothesisatthe5%confidencelevelbasedon216=65,536replications.Allreportedp-valuesarebasedontwo-sidedtests.

Parameters

(1,1)

(2,1)

(1,1/4)

(1,1/8)

(1,0)

(2,0)

(5,0)

Normal

4.7%

4.6%

4.6%

4.5%

4.4%

4.3%

4.9%

Scaledt10

13.7%

19.4%

24.1%

28.6%

34.2%

40.8%

45.1%

Scaledt5

21.2%

34.0%

45.7%

55.0%

64.6%

72.2%

76.4%

Scaledt3

13.1%

28.7%

46.5%

61.3%

75.0%

82.2%

86.5%

Table1:Sizeandpoweroftestsbasedonbetamonokernels.

Kernelwindowis[0.975,1].2^16trialswith500observationspertrial.

ResultsforunivariatebetakernelsarereportedinTable

1.

Forallsetsofbetaparameters,testsarewell-sized.ForeachalternativetruemodelF,wefindthatpowerincreasesasbdeclinesandaincreases.Themagnitudeoftheeffectisextremelylarge.Forexample,againstthescaledt3alternative,therejectionrateincreasesfrom13.1%fortheuniform(beta(1,1))kernelto75.0%forthebeta(1,0)to86.5%forthebeta(5,0).ThispatternisconfirmedacrossafinergridofbetaparametersforthecaseoftheStudentt5inFigure

1.

Tounderstandthispattern,observethatforanytwoPITvaluesα1<p1<p2<1,theratioofthebetakernelsgν(p2)/gν(p1)decreasesinbandincreasesina.Thehigherthisratio,thegreatertheweightinthetestonPITintheneighborhoodofp2relativetoPITintheneighborhoodofp1.AsshowninFigure

2,withinthekernelwindowof[0.975,1],the

distributionsofPITunderthescaledStudenttalternativesdiffermostfromthedistributionunderthenull(greensolidline)aswemovedeeperintothetail.Thus,wegenerallyexpect

14

RejectionRate(logscale)

0.5

0.3

0.1

02468

a

b

0

0.51

248

Figure1:Poweroftestsbasedonbetamonokernelsagainstscaledt5alternative.Kernelwindowis[0.975,1].2^16trialswith500observationspertrial.

teststhatweightmoreheavilyontheright-handtailtodeliverhigherpower.

ResultsforbivariatebetakernelsarereportedinTable

2.

GordyandMcNeil

(2020)

demonstratedthatbikerneltestsaregenerallymorepowerfulthanmonokerneltestswhenthecomponentkernelsofthebivariatetestemphasizeoppositeendsofthekernelsupport.Putanotherway,thelowerthec

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論