2022屆上海市青浦一中高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆上海市青浦一中高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆上海市青浦一中高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆上海市青浦一中高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆上海市青浦一中高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.2.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.3.已知中內(nèi)角所對(duì)應(yīng)的邊依次為,若,則的面積為()A. B. C. D.4.已知函數(shù)的圖象如圖所示,則下列說(shuō)法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對(duì)稱(chēng)中心是D.函數(shù)的對(duì)稱(chēng)軸是5.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.6.已知函數(shù)(,,),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-18.已知焦點(diǎn)為的拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),點(diǎn)在拋物線(xiàn)上,則當(dāng)取得最大值時(shí),直線(xiàn)的方程為()A.或 B.或 C.或 D.9.已知函數(shù),則()A. B.1 C.-1 D.010.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書(shū)中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線(xiàn)畫(huà)出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.11.已知復(fù)數(shù)滿(mǎn)足,則=()A. B.C. D.12.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)_______.14.如圖是一個(gè)算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為_(kāi)_____________.15.實(shí)數(shù),滿(mǎn)足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_(kāi)______.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.18.(12分)某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)每滿(mǎn)元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過(guò)元,求的最小值.19.(12分)如圖,四邊形為菱形,為與的交點(diǎn),平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長(zhǎng).20.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過(guò)作平行于軸的直線(xiàn),設(shè)與終邊所在直線(xiàn)的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.21.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為.(1)求曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的參數(shù)方程;(2)設(shè)曲線(xiàn)與曲線(xiàn)在第二象限的交點(diǎn)為,曲線(xiàn)與軸的交點(diǎn)為,點(diǎn),求的周長(zhǎng)的最大值.22.(10分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線(xiàn)交于.(1)求證:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.2.C【解析】

利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實(shí)部與虛部相等,,解得.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.3.A【解析】

由余弦定理可得,結(jié)合可得a,b,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計(jì)算能力,是一道容易題.4.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對(duì)稱(chēng)性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對(duì)稱(chēng)中心是,故C正確;令,得,故函數(shù)的對(duì)稱(chēng)軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對(duì)稱(chēng)性的判斷,考查推理能力與計(jì)算能力,屬于中等題.5.A【解析】

根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.6.B【解析】

先根據(jù)圖象求出函數(shù)的解析式,再由平移知識(shí)得到的解析式,然后分別找出和的等價(jià)條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于中檔題.7.B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.8.A【解析】

過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,利用拋物線(xiàn)的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線(xiàn)相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線(xiàn)相切,易知此時(shí)直線(xiàn)的斜率存在,設(shè)切線(xiàn)方程為,則.則,則直線(xiàn)的方程為.故選:A.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,涉及到拋物線(xiàn)的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9.A【解析】

由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問(wèn)題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10.C【解析】

根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線(xiàn)長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線(xiàn)長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.11.B【解析】

利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.12.B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿(mǎn)足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒(méi)有原象,故可否定.故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求出的范圍,再由函數(shù)值為零,得到的取值可得零點(diǎn)個(gè)數(shù).【詳解】詳解:由題可知,或解得,或故有3個(gè)零點(diǎn).【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點(diǎn),屬于基礎(chǔ)題.14.【解析】

根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時(shí),由得,當(dāng)時(shí),由,此時(shí)無(wú)解.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.15.【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線(xiàn)的截距最大時(shí),取得最小值,此時(shí)直線(xiàn)為,作出直線(xiàn),交于A(yíng)點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線(xiàn)也過(guò)A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價(jià)于點(diǎn)與原點(diǎn)連線(xiàn)的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線(xiàn)性規(guī)劃的問(wèn)題,在解題的過(guò)程中,注意正確畫(huà)出約束條件對(duì)應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.16.8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.18.;.【解析】

設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡(jiǎn)得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,所以;由題意可知,隨機(jī)變量的可能取值為,,,且,,,所以隨機(jī)變量的數(shù)學(xué)期望,,化簡(jiǎn)得,由題意可知,,即,化簡(jiǎn)得,因?yàn)?,解得,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于常考題.19.(1)證明見(jiàn)解析;(2)1【解析】

(1)由菱形的性質(zhì)和線(xiàn)面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長(zhǎng),運(yùn)用三棱錐的體積公式,計(jì)算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長(zhǎng)為1.【點(diǎn)睛】本題考查面面垂直的判定,注意運(yùn)用線(xiàn)面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡(jiǎn)運(yùn)算能力和推理能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20.(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡(jiǎn)函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡(jiǎn)和計(jì)算能力.21.(1)曲線(xiàn)的直角坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為為參數(shù)(2)【解析】

(1)將代入,可得,所以曲線(xiàn)的直角坐標(biāo)方程為.由可得,將,代入上式,可得,整理可得,所以曲線(xiàn)的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因?yàn)?,所以,所以?dāng),即時(shí),l取得最大值為,所以的周長(zhǎng)的最大值為.22.(1)見(jiàn)解析;(2)【解析】

(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線(xiàn)的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線(xiàn)面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線(xiàn)面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論