版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.52.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為()A.或 B. C. D.或3.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.4.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有5.過(guò)圓外一點(diǎn)引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程是().A. B. C. D.6.已知命題,,則是()A., B.,.C., D.,.7.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.128.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.909.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.2010.函數(shù)的大致圖像為()A. B.C. D.11.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.12012.已知實(shí)數(shù),滿足,則的最大值等于()A.2 B. C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為偶函數(shù),則_____.14.如圖,己知半圓的直徑,點(diǎn)是弦(包含端點(diǎn),)上的動(dòng)點(diǎn),點(diǎn)在弧上.若是等邊三角形,且滿足,則的最小值為_(kāi)__________.15.已知函數(shù)對(duì)于都有,且周期為2,當(dāng)時(shí),,則________________________.16.若,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.18.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.19.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無(wú)論實(shí)數(shù)取何值,直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過(guò)點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.20.(12分)第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺(jué)垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).22.(10分)某精密儀器生產(chǎn)車(chē)間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對(duì)其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長(zhǎng)度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長(zhǎng)度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場(chǎng)帶來(lái)的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說(shuō)明理由.附:若隨機(jī)變量服從正態(tài)分布,則.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.2.C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)3.A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.4.C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.5.A【解析】過(guò)圓外一點(diǎn),引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程為,故選.6.B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.7.C【解析】
由開(kāi)始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻?,故選C.【點(diǎn)睛】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。8.A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9.C【解析】
利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點(diǎn)睛】本題考查等差數(shù)列的求和問(wèn)題,屬于基礎(chǔ)題10.D【解析】
通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.11.A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。12.D【解析】
畫(huà)出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫(huà)出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)偶函數(shù)的定義列方程,化簡(jiǎn)求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力,屬于中檔題.14.1【解析】
建系,設(shè),表示出點(diǎn)坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點(diǎn)建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算,坐標(biāo)運(yùn)算,屬于中檔題.15.【解析】
利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當(dāng)時(shí),,∴,故答案為:【點(diǎn)睛】本題考查函數(shù)的周期性與對(duì)稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.16.8【解析】
根據(jù),利用基本不等式可求得函數(shù)最值.【詳解】,,當(dāng)且僅當(dāng)且,即時(shí),等號(hào)成立.時(shí),取得最小值.故答案為:【點(diǎn)睛】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)?,,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問(wèn)題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫(xiě)準(zhǔn)確,本題是一道中檔題.18.(1)極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為(2)【解析】
(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點(diǎn)的極坐標(biāo),利用計(jì)算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(2)由(1),得點(diǎn)的極坐標(biāo)為,由直線過(guò)原點(diǎn)且傾斜角為,知點(diǎn)的極坐標(biāo)為,.【點(diǎn)睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.19.(1)見(jiàn)解析,(2)函數(shù)存在唯一零點(diǎn).【解析】
(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點(diǎn)存在性定理即可求出零點(diǎn)個(gè)數(shù).【詳解】所以直線方程為即,恒過(guò)點(diǎn)將代入直線方程,得考慮方程即,等價(jià)于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點(diǎn),即函數(shù)存在唯一零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過(guò)定點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)存在性定理,屬于難題.20.(1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見(jiàn)解析(2)分布列見(jiàn)解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)因?yàn)榈挠^測(cè)值,所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺(jué)垃圾分類年限的調(diào)查,記選出自覺(jué)垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運(yùn)算求解能力.21.(1),;(2),,.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年《價(jià)值為綱》學(xué)習(xí)心得范例(3篇)
- 課題申報(bào)參考:接受美學(xué)視野下的卞之琳莎學(xué)研究
- 課題申報(bào)參考:教育強(qiáng)國(guó)進(jìn)程中高校繼續(xù)教育高質(zhì)量發(fā)展的保障機(jī)制和推進(jìn)路徑研究
- 2025版房地產(chǎn)銷(xiāo)售代理授權(quán)委托合同3篇
- 二零二五年度物流倉(cāng)儲(chǔ)中心臨時(shí)搬運(yùn)工勞動(dòng)合同書(shū)4篇
- 2025版學(xué)校游泳池配套設(shè)施租賃與管理承包合同示范2篇
- 二零二五版藝術(shù)品拍賣(mài)師傭金分成合同3篇
- 個(gè)性化離婚合同與起訴狀套裝2024版版B版
- 二零二五年度健康管理與養(yǎng)老服務(wù)業(yè)合作協(xié)議3篇
- 二零二五年度圖書(shū)封面及插圖設(shè)計(jì)合同4篇
- 山東鐵投集團(tuán)招聘筆試沖刺題2025
- 真需求-打開(kāi)商業(yè)世界的萬(wàn)能鑰匙
- 2025年天津市政集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- GB/T 44953-2024雷電災(zāi)害調(diào)查技術(shù)規(guī)范
- 2024-2025學(xué)年度第一學(xué)期三年級(jí)語(yǔ)文寒假作業(yè)第三天
- 2024年列車(chē)員技能競(jìng)賽理論考試題庫(kù)500題(含答案)
- 心律失常介入治療
- 6S精益實(shí)戰(zhàn)手冊(cè)
- 展會(huì)場(chǎng)館保潔管理服務(wù)方案
- 監(jiān)理從業(yè)水平培訓(xùn)課件
- 廣東省惠州市實(shí)驗(yàn)中學(xué)2025屆物理高二第一學(xué)期期末綜合測(cè)試試題含解析
評(píng)論
0/150
提交評(píng)論