2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷含解析_第1頁
2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷含解析_第2頁
2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷含解析_第3頁
2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷含解析_第4頁
2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024-2025學(xué)年江蘇省蔣王中學(xué)高考押題金卷(全國卷Ⅲ)數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.2.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對3.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)4.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.5.已知為定義在上的奇函數(shù),若當(dāng)時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.6.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于7.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.9.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.10.設(shè),是非零向量,若對于任意的,都有成立,則A. B. C. D.11.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.已知集合,集合,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.15.已知,為虛數(shù)單位,且,則=_____.16.若實數(shù)x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.18.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.19.(12分)語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機抽取了100名購買“小愛同學(xué)”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學(xué)”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,試估計該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān)?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.21.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.22.(10分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.2.A【解析】

首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.3.D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補集的定義寫出運算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.該題考查的是有關(guān)集合的問題,涉及到的知識點有函數(shù)的定義域,函數(shù)的值域,集合的運算,屬于基礎(chǔ)題目.4.A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.5.A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運算的核心素養(yǎng).6.C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.7.C【解析】

由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對應(yīng)點坐標即得【詳解】解析:,,對應(yīng)點為,在第三象限.故選:C.本題考查復(fù)數(shù)的除法運算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.8.C【解析】

不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.9.B【解析】

直線的傾斜角為,易得.設(shè)雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.10.D【解析】

畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當(dāng),即時,最小,滿足,對于任意的,所以本題答案為D.本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.11.B【解析】

試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題12.A【解析】

根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當(dāng)時,,不符合題意,當(dāng)時,.故選A.本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.14.12【解析】

由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。15.4【解析】

解:利用復(fù)數(shù)相等,可知由有.16.3【解析】

作出可行域,可得當(dāng)直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當(dāng)直線經(jīng)過點時,.故答案為:3.本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導(dǎo),再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時,<0,單調(diào)遞減;當(dāng)時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當(dāng)時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當(dāng)時,>0.當(dāng),時,=.故當(dāng)>在區(qū)間內(nèi)恒成立時,必有.當(dāng)時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當(dāng)時,令=().當(dāng)時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當(dāng)時,=>0,即>恒成立.綜上,.【考點】導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學(xué)生不易想到,有一定的難度.18.(1)見解析(2)【解析】

(1)利用正弦定理求得,由此得到,結(jié)合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉(zhuǎn)化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設(shè)平面的法向量為,由可得:,令,則,設(shè)平面的法向量為,由可得:,令,則,設(shè)二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)多2350人;(2)有95%的把握認為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān).【解析】

(1)根據(jù)題意,知100人中購買“小愛同學(xué)”的女性有55人,購買“天貓精靈”的女性有40人,即可估計該地區(qū)購買“小愛同學(xué)”的女性人數(shù)和購買“天貓精靈”的女性的人數(shù),即可求得答案;(2)根據(jù)列聯(lián)表和給出的公式,求出,與臨界值比較,即可得出結(jié)論.【詳解】解:(1)由題可知,100人中購買“小愛同學(xué)”的女性有55人,購買“天貓精靈”的女性有40人,由于地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,估計購買“小愛同學(xué)”的女性有人.估計購買“天貓精靈”的女性有人.則,∴估計該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多2350人.(2)由題可知,,∴有95%的把握認為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān).本題考查隨機抽樣估計總體以及獨立性檢驗的應(yīng)用,考查計算能力.20.(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點是函數(shù)圖象的一個對稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運算求解能力,屬于中檔基礎(chǔ)題.21.(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論