新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-4 構(gòu)造函數(shù)以及切線(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-4 構(gòu)造函數(shù)以及切線(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-4 構(gòu)造函數(shù)以及切線(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-4 構(gòu)造函數(shù)以及切線(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-4 構(gòu)造函數(shù)以及切線(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題2-4構(gòu)造函數(shù)以及切線歸類目錄TOC\o"1-1"\h\u題型01切線求參 1題型02求“過點(diǎn)”型切線方程 3題型03“過點(diǎn)”切線求參 5題型04“過點(diǎn)”切線條數(shù)的判斷 7題型05由切線條數(shù)求參 8題型06公切線 10題型07特殊構(gòu)造:冪積型構(gòu)造 12題型08特殊構(gòu)造:冪商型構(gòu)造 15題型09特殊構(gòu)造:ex的積型構(gòu)造 16題型10特殊構(gòu)造:ex的商型構(gòu)造 18題型11特殊構(gòu)造:對(duì)數(shù)型構(gòu)造 21題型12特殊構(gòu)造:正弦型構(gòu)造 23題型13特殊構(gòu)造:余弦型構(gòu)造 26題型14復(fù)合型構(gòu)造 28高考練場(chǎng) 30題型01切線求參【解題攻略】求曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線方程:(1)求出函數(shù)y=f(x)在點(diǎn)x=x0處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的斜率.(2)切線方程為:y=y(tǒng)0+f′(x0)(x-x0).1、設(shè)切點(diǎn)(或者給出了切點(diǎn)):P(x0,y0)2、y0=f(x0)3、y=f′(x)SKIPIF1<0k=f′(x0)4、切線方程:y-y0=k(x-x0)【典例1-1】(2023春·重慶·高二校聯(lián)考期中)若函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.2或SKIPIF1<0 C.2 D.1或SKIPIF1<0【答案】B【分析】由兩線垂直可知SKIPIF1<0處切線的斜率為5,利用導(dǎo)數(shù)的幾何意義有SKIPIF1<0,即可求SKIPIF1<0的值.【詳解】由題意知:直線SKIPIF1<0的斜率為SKIPIF1<0,則在SKIPIF1<0處切線的斜率為5,又∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故選:B.【典例1-2】(山東省煙臺(tái)市2021-2022學(xué)年高三數(shù)學(xué)試題)已知曲線SKIPIF1<0在點(diǎn)(0,1)處的切線與曲線SKIPIF1<0只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的值為(

)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<0【答案】A【分析】先求出SKIPIF1<0導(dǎo)數(shù),求得切線的斜率,可得切線方程,再由切線與曲線SKIPIF1<0只有一個(gè)公共點(diǎn),進(jìn)而聯(lián)立得到SKIPIF1<0的值.【詳解】SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處切線斜率SKIPIF1<0,則曲線SKIPIF1<0在SKIPIF1<0處切線方程為SKIPIF1<0,即SKIPIF1<0由于切線與曲線SKIPIF1<0只有一個(gè)公共點(diǎn),聯(lián)立SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0故選:A.【變式1-1】(河南省鄭州市2021-2022學(xué)年高三考試數(shù)學(xué)(理科)試題)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義得出SKIPIF1<0的值.【詳解】令SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0又該函數(shù)在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,所以SKIPIF1<0故答案為:SKIPIF1<0【變式1-2】(河南省許昌市2021-2022學(xué)年高三數(shù)學(xué)文科試題)已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,根據(jù)切點(diǎn)坐標(biāo)可得SKIPIF1<0,列方程求解.【詳解】SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0∴可得SKIPIF1<0,解得SKIPIF1<0則SKIPIF1<0故答案為:SKIPIF1<0.【變式1-3】已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象過定點(diǎn)SKIPIF1<0,若曲線SKIPIF1<0在SKIPIF1<0處的切線經(jīng)過點(diǎn)SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為______.【答案】SKIPIF1<0##0.5【分析】先求出SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)所經(jīng)過的定點(diǎn)SKIPIF1<0的坐標(biāo),然后根據(jù)導(dǎo)數(shù)的幾何意義求出SKIPIF1<0在SKIPIF1<0處的切線方程,最后把點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程,即可得SKIPIF1<0值.【詳解】函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象恒過點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0在SKIPIF1<0處的切線的斜率為SKIPIF1<0,又SKIPIF1<0,所以切線方程為SKIPIF1<0,因?yàn)榍芯€經(jīng)過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0題型02求“過點(diǎn)”型切線方程【解題攻略】1、設(shè)切點(diǎn)(或者給出了切點(diǎn)):P(x0,y0)2、y0=f(x0)3、y=f′(x)SKIPIF1<0k=f′(x0)4、切線方程:y-y0=k(x-x0)5、過(a,b),代入y-y0=k(x-x0),得SKIPIF1<0【典例1-1】(2023下·上海嘉定·高三上海市嘉定區(qū)第一中學(xué)校考)已知曲線SKIPIF1<0,過點(diǎn)SKIPIF1<0作曲線的切線,則切線方程.【答案】SKIPIF1<0【分析】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,求出切線方程,代入點(diǎn)SKIPIF1<0求出SKIPIF1<0,從而可得切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.因?yàn)榍芯€過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2023下·上海浦東新·高三上海市實(shí)驗(yàn)學(xué)校校考開學(xué)考試)已知曲線SKIPIF1<0,過點(diǎn)SKIPIF1<0作曲線的切線,則切線的方程為.【答案】SKIPIF1<0【分析】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,根據(jù)切線所過的點(diǎn)得到SKIPIF1<0的方程,解出SKIPIF1<0后可得所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,則切線的斜率SKIPIF1<0,故切線方程為SKIPIF1<0,又因?yàn)辄c(diǎn)SKIPIF1<0在切線上,所以SKIPIF1<0SKIPIF1<0,整理得到SKIPIF1<0,解得SKIPIF1<0,所以切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】)(云南民族大學(xué)附屬中學(xué)2022屆高三高考押題卷二數(shù)學(xué)(理)試題)函數(shù)SKIPIF1<0過原點(diǎn)的切線方程是_______.【答案】SKIPIF1<0.【分析】設(shè)切點(diǎn)為SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)切點(diǎn)為SKIPIF1<0的切線方程,再根據(jù)切線過原點(diǎn)求出SKIPIF1<0,即可得解.【詳解】解:設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故切點(diǎn)為SKIPIF1<0的切線方程為SKIPIF1<0,又因此切線過原點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0過原點(diǎn)的切線方程是SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-2】(2023春·河北邢臺(tái)·高三統(tǒng)考)過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,則該切線的斜率為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)切點(diǎn)為SKIPIF1<0,然后表示出切線方程,再將SKIPIF1<0代入可求出SKIPIF1<0,然后將SKIPIF1<0代入導(dǎo)函數(shù)中可求得結(jié)果.【詳解】設(shè)切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0所以切線方程為SKIPIF1<0,即SKIPIF1<0,將SKIPIF1<0代入得SKIPIF1<0,解得SKIPIF1<0,所以切線的斜率為SKIPIF1<0.故選:C【變式1-3】((天津市北京師范大學(xué)天津附屬中學(xué)2022-2023學(xué)年高三線上檢測(cè)數(shù)學(xué)試題))過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,則切線方程是__________.【答案】SKIPIF1<0【分析】求解導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo),求解SKIPIF1<0,從而設(shè)出切線方程,代入點(diǎn)SKIPIF1<0計(jì)算,即可求出答案.【詳解】函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以切線方程為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,解得:SKIPIF1<0,所以切線方程為SKIPIF1<0,整理得:SKIPIF1<0.故答案為:SKIPIF1<0.題型03“過點(diǎn)”切線求參【典例1-1】(2023上·遼寧錦州·高三渤海大學(xué)附屬高級(jí)中學(xué)??计谥校┮阎€SKIPIF1<0過點(diǎn)SKIPIF1<0處的切線與曲線SKIPIF1<0相切,則SKIPIF1<0【答案】8【分析】設(shè)切點(diǎn)SKIPIF1<0,并應(yīng)用導(dǎo)數(shù)幾何意義求可得切線為SKIPIF1<0,將切點(diǎn)代入求得SKIPIF1<0得切線方程,再由切線與曲線SKIPIF1<0相切,討論參數(shù)a,聯(lián)立方程有SKIPIF1<0求參數(shù).【詳解】設(shè)過點(diǎn)SKIPIF1<0處的切線在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,而SKIPIF1<0,故切線斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故切線方程為SKIPIF1<0,又切線與曲線SKIPIF1<0相切,聯(lián)立方程,得SKIPIF1<0有且僅有一個(gè)解,當(dāng)SKIPIF1<0時(shí)上述方程無解;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0.綜上,SKIPIF1<0.故答案為:SKIPIF1<0【典例1-2】(2023下·吉林長(zhǎng)春·高二長(zhǎng)春市實(shí)驗(yàn)中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,過點(diǎn)SKIPIF1<0作與SKIPIF1<0軸平行的直線交函數(shù)SKIPIF1<0的圖象于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0的切線交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,則SKIPIF1<0面積的最小值.【答案】SKIPIF1<0【分析】求出SKIPIF1<0的導(dǎo)數(shù),令x=a,求得P的坐標(biāo),可得切線的斜率,運(yùn)用點(diǎn)斜式方程可得切線的方程,令y=0,可得B的坐標(biāo),再由三角形的面積公式可得△ABP面積S,求出導(dǎo)數(shù),利用導(dǎo)數(shù)求最值,即可得到所求值.【詳解】函SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,由題意可令SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,即有切線的斜率為SKIPIF1<0,切線的方程為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,在直角三角形PAB中,SKIPIF1<0,SKIPIF1<0,則△ABP面積為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,即有SKIPIF1<0處S取得極小值,且為最小值SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】(2023·河北保定·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,過點(diǎn)SKIPIF1<0且平行于SKIPIF1<0軸的直線與曲線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,曲線SKIPIF1<0過點(diǎn)SKIPIF1<0的切線交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,則SKIPIF1<0面積的最小值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由已知求得SKIPIF1<0點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求出過SKIPIF1<0點(diǎn)的切線方程,再求出SKIPIF1<0點(diǎn)坐標(biāo),寫出三角形SKIPIF1<0的面積,再由導(dǎo)數(shù)求最值得答案.【詳解】SKIPIF1<0,把SKIPIF1<0代入,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0過點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0.SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.則SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0(舍),SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:D.【變式1-2】(2023上·貴州貴陽(yáng)·高三貴陽(yáng)一中??茧A段練習(xí))已知曲線SKIPIF1<0,過點(diǎn)SKIPIF1<0作該曲線的兩條切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】D【分析】求得切線方程為SKIPIF1<0,根據(jù)題意,轉(zhuǎn)化為關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同的解SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】由函數(shù)SKIPIF1<0,可得SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,所以切線方程為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)檫^點(diǎn)SKIPIF1<0作該曲線的兩條切線,所以關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同的解SKIPIF1<0,即關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同的解SKIPIF1<0,所以SKIPIF1<0.故選:D.【變式1-3】.直線SKIPIF1<0是曲線SKIPIF1<0的切線,則SKIPIF1<0______.【答案】SKIPIF1<0【分析】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,利用導(dǎo)數(shù)寫出切線的方程,與直線方程SKIPIF1<0對(duì)比,可出關(guān)于SKIPIF1<0、SKIPIF1<0的方程,解之即可.【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,其中SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,所以,切線斜率為SKIPIF1<0,所以,曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.題型04“過點(diǎn)”切線條數(shù)的判斷【解題攻略】”過點(diǎn)型“切線條數(shù)判斷:有幾個(gè)切點(diǎn)橫坐標(biāo),就有幾條切線。切線條數(shù)判斷,轉(zhuǎn)化為關(guān)于切點(diǎn)橫坐標(biāo)的新的函數(shù)零點(diǎn)個(gè)數(shù)判斷。【典例1-1】.(湖南省邵陽(yáng)市武岡市2022-2023學(xué)年高三上學(xué)期數(shù)學(xué)試題)已知SKIPIF1<0是奇函數(shù),則過點(diǎn)SKIPIF1<0向曲線SKIPIF1<0可作的切線條數(shù)是(

)A.1 B.2 C.3 D.不確定【答案】C【分析】根據(jù)給定條件,求出a,再求出函數(shù)SKIPIF1<0的導(dǎo)數(shù),設(shè)出切點(diǎn)坐標(biāo),借助導(dǎo)數(shù)的幾何意義列出方程求解作答.【詳解】因函數(shù)SKIPIF1<0是奇函數(shù),則由SKIPIF1<0得SKIPIF1<0恒成立,則SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0向曲線SKIPIF1<0所作切線與曲線SKIPIF1<0相切的切點(diǎn)為SKIPIF1<0,而點(diǎn)SKIPIF1<0不在曲線SKIPIF1<0上,則SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即符合條件的切點(diǎn)有3個(gè),所以過點(diǎn)SKIPIF1<0向曲線SKIPIF1<0可作的切線條數(shù)是3.故選:C【典例1-2】已知曲線SKIPIF1<0,則過點(diǎn)SKIPIF1<0可向SKIPIF1<0引切線,其切線條數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)切點(diǎn)為SKIPIF1<0,利用導(dǎo)數(shù)求出曲線SKIPIF1<0在切點(diǎn)SKIPIF1<0處的切線方程,再將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程,可得出關(guān)于SKIPIF1<0的方程,解出該方程,得出該方程根的個(gè)數(shù),即為所求.【詳解】設(shè)在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因此,過點(diǎn)SKIPIF1<0可向SKIPIF1<0引切線,有三條.故選:C.【變式1-1】(湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)2021屆高三第一次暑假作業(yè)檢測(cè)數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,過點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0切線的條數(shù)為A.0 B.1 C.2 D.3【答案】C【分析】設(shè)出切點(diǎn)坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義及切線所過點(diǎn)求出切點(diǎn)個(gè)數(shù),從而可得答案.【詳解】設(shè)切點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0;令SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為單調(diào)遞增函數(shù);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為單調(diào)遞減函數(shù);所以SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0有兩個(gè)不同的根,即切線的條數(shù)為2,故選:C.【變式1-2】(2021-2022學(xué)年廣東省東莞市高三數(shù)學(xué)A卷)已知函數(shù)SKIPIF1<0,則過點(diǎn)(0,0)可作曲線SKIPIF1<0的切線的條數(shù)為(

)A.3 B.0 C.1 D.2【答案】D【分析】分析可得SKIPIF1<0不是切點(diǎn),設(shè)切點(diǎn)SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義,求得切線的斜率k,根據(jù)點(diǎn)P和點(diǎn)SKIPIF1<0坐標(biāo),可求得切線斜率k,聯(lián)立即可得答案.【詳解】∵點(diǎn)SKIPIF1<0不在函數(shù)SKIPIF1<0的圖象上,∴點(diǎn)SKIPIF1<0不是切點(diǎn),設(shè)切點(diǎn)為SKIPIF1<0(SKIPIF1<0),由SKIPIF1<0,可得SKIPIF1<0,則切線的斜率SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故切線有2條.故選:D.【變式1-3】(北京市北京理工大學(xué)附屬中學(xué)通州校區(qū)2019-2020學(xué)年高三年級(jí)考試數(shù)學(xué)試題)已知過點(diǎn)SKIPIF1<0且與曲線SKIPIF1<0相切的直線的條數(shù)有(

)條.A.0 B.1 C.2 D.3【答案】C【分析】設(shè)出切點(diǎn)的坐標(biāo),然后根據(jù)導(dǎo)數(shù)的幾何意義求出曲線SKIPIF1<0的切線,根據(jù)切線過點(diǎn)SKIPIF1<0,結(jié)合關(guān)于切點(diǎn)橫坐標(biāo)的方程解的個(gè)數(shù)進(jìn)行求解即可.【詳解】設(shè)曲線SKIPIF1<0的切點(diǎn)的坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,因此該曲線切線的斜率為SKIPIF1<0,所以該曲線切線的方程為:SKIPIF1<0,該切線過點(diǎn)SKIPIF1<0,所以有SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因此過點(diǎn)SKIPIF1<0且與曲線SKIPIF1<0相切的直線的條數(shù)有2條.故選:C題型05由切線條數(shù)求參【典例1-1】若過點(diǎn)SKIPIF1<0可作出曲線SKIPIF1<0的三條切線,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________【答案】SKIPIF1<0【分析】根據(jù)函數(shù)切線的求解方法,設(shè)切點(diǎn)求切線方程,代入點(diǎn)SKIPIF1<0,根據(jù)方程與函數(shù)的關(guān)系,將問題轉(zhuǎn)化為兩個(gè)函數(shù)求交點(diǎn)問題,利用導(dǎo)數(shù),作圖,可得答案.【詳解】由已知,曲線SKIPIF1<0,即令SKIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,切線方程的斜率為SKIPIF1<0,所以切線方程為:SKIPIF1<0,將點(diǎn)SKIPIF1<0代入方程得:SKIPIF1<0,整理得SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,過點(diǎn)SKIPIF1<0可作出曲線SKIPIF1<0的三條切線,可知兩個(gè)函數(shù)圖像SKIPIF1<0與SKIPIF1<0有三個(gè)不同的交點(diǎn),又因?yàn)镾KIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,則當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,函數(shù)SKIPIF1<0的極小值為SKIPIF1<0,如圖所示,當(dāng)SKIPIF1<0時(shí),兩個(gè)函數(shù)圖像有三個(gè)不同的交點(diǎn).故答案為:SKIPIF1<0.【典例1-2】(福建省福州華僑中學(xué)2023屆高三上學(xué)期第二次考試數(shù)學(xué)試題)若曲線SKIPIF1<0有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍為__________.【答案】SKIPIF1<0或SKIPIF1<0.【分析】設(shè)切點(diǎn)坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義得到SKIPIF1<0,再根據(jù)曲線SKIPIF1<0有兩條過坐標(biāo)原點(diǎn)的切線得到方程SKIPIF1<0有兩個(gè)解,讓SKIPIF1<0,解不等式即可.【詳解】由SKIPIF1<0得SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,因?yàn)榍€SKIPIF1<0有兩條過坐標(biāo)原點(diǎn)的切線,所以方程SKIPIF1<0有兩個(gè)解,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【變式1-1】過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,若切線有且只有兩條,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】利用導(dǎo)數(shù)幾何意義,求得切線方程,根據(jù)該方程過點(diǎn)SKIPIF1<0,且方程有兩個(gè)根,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),即得.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)為(SKIPIF1<0),SKIPIF1<0,所以切線方程為SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0這個(gè)關(guān)于SKIPIF1<0的方程有兩個(gè)解,令SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有最大值,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-2】若曲線SKIPIF1<0有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍是________________.【答案】SKIPIF1<0【分析】設(shè)出切點(diǎn)橫坐標(biāo)SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點(diǎn)得到關(guān)于SKIPIF1<0的方程,根據(jù)此方程應(yīng)有兩個(gè)不同的實(shí)數(shù)根,求得SKIPIF1<0的取值范圍.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,切線斜率SKIPIF1<0,切線方程為:SKIPIF1<0,∵切線過原點(diǎn),∴SKIPIF1<0,整理得:SKIPIF1<0,∵切線有兩條,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0【變式1-3】(2023·全國(guó)·高三專題練習(xí))已知過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線有且僅有兩條,則實(shí)數(shù)a的取值可能為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)切線切點(diǎn)為SKIPIF1<0,后由切線幾何意義可得切線方程,代入SKIPIF1<0,可得SKIPIF1<0,則過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線有且僅有兩條,等價(jià)于關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同實(shí)根,即可得答案.【詳解】設(shè)切線切點(diǎn)為SKIPIF1<0,因SKIPIF1<0,則切線方程為:SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,因SKIPIF1<0,則SKIPIF1<0.因過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線有且僅有兩條,則SKIPIF1<0有且僅有兩個(gè)不等實(shí)根,則SKIPIF1<0或SKIPIF1<0.則SKIPIF1<0符合題意.故選:D題型06公切線【解題攻略】交點(diǎn)處公切線,可以直接參照直線在點(diǎn)處的切線求法設(shè)交點(diǎn)(切點(diǎn))對(duì)函數(shù)SKIPIF1<0,如果要求它們的圖象的公切線,只需分別寫出兩條切線:SKIPIF1<0)

和SKIPIF1<0再令

SKIPIF1<0

,消去一個(gè)變量后,再討論得到的方程的根的個(gè)數(shù)即可。但在這里需要注意

x1

x2

的范圍,例如,若f(x)=lnx,則要求

x1>0

【典例1-1】已知直線SKIPIF1<0是函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的公切線,若SKIPIF1<0是直線SKIPIF1<0與函數(shù)SKIPIF1<0相切的切點(diǎn),則SKIPIF1<0____________.【答案】SKIPIF1<0【分析】求出導(dǎo)函數(shù)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得切線方程SKIPIF1<0,設(shè)SKIPIF1<0圖象上的切點(diǎn)為SKIPIF1<0,由導(dǎo)數(shù)幾何意義得切線方程,兩直線重合求得SKIPIF1<0,從而得SKIPIF1<0值.【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0相切的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2023春·高三課時(shí)練習(xí))已知直線SKIPIF1<0:SKIPIF1<0既是曲線SKIPIF1<0的切線,又是曲線SKIPIF1<0的切線,則SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【分析】本題主要求切線方程,設(shè)兩個(gè)曲線方程的切點(diǎn),由兩條切線均為SKIPIF1<0,通過等量關(guān)系可得到SKIPIF1<0的取值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)切點(diǎn)分別為SKIPIF1<0,則曲線SKIPIF1<0的切線方程為:SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,曲線SKIPIF1<0的切線方程為:SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0e或SKIPIF1<0.當(dāng)SKIPIF1<0e,切線方程為SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0,切線方程為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0.故SKIPIF1<0的取值為SKIPIF1<0或SKIPIF1<0.故選:D【變式1-1】(2023·全國(guó)·高三專題練習(xí))若直線SKIPIF1<0是曲線SKIPIF1<0的切線,也是SKIPIF1<0的切線,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)直線SKIPIF1<0與SKIPIF1<0和SKIPIF1<0的切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,分別求出切點(diǎn)處的直線方程,由已知切線方程,可得方程組,解方程可得切點(diǎn)的橫坐標(biāo),即可得到SKIPIF1<0的值.【詳解】設(shè)直線SKIPIF1<0與SKIPIF1<0和SKIPIF1<0的切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則切線方程分別為,SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0SKIPIF1<0依題意上述兩直線與SKIPIF1<0是同一條直線,所以,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:C.【變式1-2】(2022·黑龍江哈爾濱·哈爾濱三中??寄M預(yù)測(cè))曲線SKIPIF1<0過點(diǎn)SKIPIF1<0的切線也是曲線SKIPIF1<0的切線,則SKIPIF1<0;若此公切線恒在函數(shù)SKIPIF1<0的圖象上方,則a的取值范圍是.【答案】SKIPIF1<0SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義可求出SKIPIF1<0;將此公切線恒在函數(shù)SKIPIF1<0的圖象上方,轉(zhuǎn)化為SKIPIF1<0恒成立,再構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求出最小值即可得解.【詳解】由SKIPIF1<0得SKIPIF1<0,設(shè)曲線SKIPIF1<0過點(diǎn)SKIPIF1<0的切線的切點(diǎn)為SKIPIF1<0,則切線的斜率為SKIPIF1<0,切線方程為SKIPIF1<0,由于該切線過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,設(shè)該切線與曲線SKIPIF1<0切于SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以該切線的斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,將SKIPIF1<0代入得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.由以上可知該公切線方程為SKIPIF1<0,即SKIPIF1<0,若此公切線恒在函數(shù)SKIPIF1<0的圖象上方,則SKIPIF1<0,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.所以SKIPIF1<0.【變式1-3】若曲線SKIPIF1<0與曲線SKIPIF1<0存在2條公共切線,則a的值是_________.【答案】SKIPIF1<0【分析】設(shè)公切線在SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,在SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義求出對(duì)應(yīng)的切線方程,有SKIPIF1<0,整理得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)研究SKIPIF1<0的單調(diào)性,結(jié)合圖像即可得出結(jié)果.【詳解】設(shè)公切線在SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,在SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,則曲線在切點(diǎn)的切線方程的斜率分別為SKIPIF1<0,SKIPIF1<0,對(duì)應(yīng)的切線方程分別為SKIPIF1<0、SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,整理,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,因?yàn)閮蓷l曲線有2條公共切線,所以函數(shù)SKIPIF1<0與SKIPIF1<0圖像有兩個(gè)交點(diǎn),又SKIPIF1<0,且SKIPIF1<0,如圖,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0..題型07特殊構(gòu)造:冪積型構(gòu)造【解題攻略】?jī)绾瘮?shù)積形式構(gòu)造:1.對(duì)于SKIPIF1<0構(gòu)造SKIPIF1<02.對(duì)于SKIPIF1<0構(gòu)造SKIPIF1<0【典例1-1】設(shè)定義在SKIPIF1<0的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】構(gòu)造函數(shù)SKIPIF1<0,再根據(jù)題意分析SKIPIF1<0的單調(diào)性,再化簡(jiǎn)SKIPIF1<0可得SKIPIF1<0,再利用函數(shù)的單調(diào)性與定義域求解即可.解:令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A.【典例1-2】已知定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系正確的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用條件構(gòu)造函數(shù)SKIPIF1<0,然后利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,利用函數(shù)的單調(diào)性比較大小.【詳解】解:根據(jù)題意,設(shè)SKIPIF1<0,若SKIPIF1<0為奇函數(shù),則SKIPIF1<0,則函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又由當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),SKIPIF1<0,SKIPIF1<0(2),SKIPIF1<0,且SKIPIF1<0,則有SKIPIF1<0;故選SKIPIF1<0.【變式1-1】已知定義在R上的偶函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,若SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0也為偶函數(shù),利用導(dǎo)數(shù)可以判斷SKIPIF1<0在SKIPIF1<0為減函數(shù),則不等式SKIPIF1<0可轉(zhuǎn)化為SKIPIF1<0,解不等式即可得到答案.【詳解】解:SKIPIF1<0SKIPIF1<0是定義在R上的偶函數(shù),SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0時(shí),恒有SKIPIF1<0,SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0為減函數(shù).SKIPIF1<0SKIPIF1<0為偶函數(shù),SKIPIF1<0SKIPIF1<0也為偶函數(shù)SKIPIF1<0SKIPIF1<0在SKIPIF1<0為增函數(shù).又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,得SKIPIF1<0.故選A.【變式1-2】.已知奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論