2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷含解析_第1頁
2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷含解析_第2頁
2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷含解析_第3頁
2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷含解析_第4頁
2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省蘇州市昆山市、太倉市中考數(shù)學仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-22.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°3.如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°4.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π5.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n6.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.7.比1小2的數(shù)是()A. B. C. D.8.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.9.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=()A.1 B.2 C.3 D.410.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米二、填空題(本大題共6個小題,每小題3分,共18分)11.半徑是6cm的圓內接正三角形的邊長是_____cm.12.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結論是____________.(填寫所有正確結論的序號)13.分解因式:_____.14.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.15.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.16.分解因式:__________.三、解答題(共8題,共72分)17.(8分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?18.(8分)(11分)閱讀資料:如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應用:如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以OQ為半徑的⊙O的方程;若不存在,說明理由.19.(8分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.20.(8分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質量為的約有多少只?21.(8分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內,求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.22.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.23.(12分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側;請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.24.某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.2、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.3、C【解析】

根據(jù)旋轉的性質和三角形內角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉的性質,關鍵是根據(jù)旋轉的性質和三角形內角和解答.4、D【解析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質、特殊角的三角函數(shù)值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.5、D【解析】

根據(jù)反比例函數(shù)的性質,可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質,利用反比例函數(shù)的性質:k<1時,圖象位于二四象限是解題關鍵.6、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.7、C【解析】1-2=-1,故選C8、D【解析】

根據(jù)k>0,k<0,結合兩個函數(shù)的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.9、B【解析】

先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉的性質得∠CAB=30°,根據(jù)切線的性質得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點A逆時針旋轉30°后得到的直線l1剛好與⊙O相切于點C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點睛】本題考查了直線與圓的位置關系:設⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉的性質.10、C【解析】當60cm的木條與20cm是對應邊時,那么另兩條邊的木條長度分別為90cm與120cm;當60cm的木條與30cm是對應邊時,那么另兩條邊的木條長度分別為40cm與80cm;當60cm的木條與40cm是對應邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】

根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質,熟練掌握等邊三角形的性質是解題的關鍵,根據(jù)圓的內接正三角形的特點,求出內心到每個頂點的距離,可求出內接正三角形的邊長.12、①②③【解析】

①根據(jù)三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進而可證出△ADF≌△FEC(SSS),結論①正確;②根據(jù)三角形中位線定理可得出EF∥AB、EF=AD,進而可證出四邊形ADEF為平行四邊形,由AB=AC結合D、F分別為AB、AC的中點可得出AD=AF,進而可得出四邊形ADEF為菱形,結論②正確;③根據(jù)三角形中位線定理可得出DF∥BC、DF=BC,進而可得出△ADF∽△ABC,再利用相似三角形的性質可得出,結論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點,∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結論①正確;②∵E、F分別為BC、AC的中點,∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點,∴AD=AF,∴四邊形ADEF為菱形,結論②正確;③∵D、F分別為AB、AC的中點,∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結論③正確.故答案為①②③.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、相似三角形的判定與性質以及三角形中位線定理,逐一分析三條結論的正誤是解題的關鍵.13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應用完全平方公式分解即可:.14、2【解析】

根據(jù)勾股定理可以得出AB的長度,從而得知CD的長度,再根據(jù)旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據(jù)勾股定理求出AB的長是解題的關鍵.15、.【解析】

解:根據(jù)從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.16、a(a-4)2【解析】

首先提取公因式a,進而利用完全平方公式分解因式得出即可.【詳解】故答案為:【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關鍵.分解一定要徹底.三、解答題(共8題,共72分)17、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最?。划?<a<3時,取m=50時費用最省.【解析】試題分析:(1)設甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關系式,根據(jù)一次函數(shù)的性質就可以求出結論;(3)根據(jù)(2)表示出W與m之間的關系式,由一次函數(shù)的性質分類討論就可以得出結論.(1)設甲種套房每套提升費用為x萬元,依題意,得625解得:x=25經檢驗:x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費用分別為25萬元,28萬元.(2)設甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設提升兩種套房所需要的費用為W.所以當時,費用最少,即第三種方案費用最少.(3)在(2)的基礎上有:當a=3時,三種方案的費用一樣,都是2240萬元.當a>3時,取m=48時費用W最省.當0<a<3時,取m=50時費用最省.考點:1.一次函數(shù)的應用;2.分式方程的應用;3.一元一次不等式組的應用.18、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應用:①見解析②點Q的坐標為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質可求出QH、BH,進而求出OH,就可得到點Q的坐標,然后運用問題拓展中的結論就可解決問題.試題解析:解:問題拓展:設A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標為(4,3),∴OQ==5,∴以Q為圓心,以OQ為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質;等腰三角形的性質;直角三角形斜邊上的中線;勾股定理;切線的判定與性質;相似三角形的判定與性質;銳角三角函數(shù)的定義.19、(1)(2)(3)【解析】

(1)(2)觀察知,找等號后面的式子規(guī)律是關鍵:分子不變,為1;分母是兩個連續(xù)奇數(shù)的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.20、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是1.5,有,∴這組數(shù)據(jù)的中位數(shù)為1.5.(Ⅲ)∵在所抽取的樣本中,質量為的數(shù)量占.∴由樣本數(shù)據(jù),估計這2500只雞中,質量為的數(shù)量約占.有.∴這2500只雞中,質量為的約有200只.點睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).21、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內,求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點坐標為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點坐標為(2﹣t,1),設直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當點E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當點E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當點E在△DAC內時,<t<5;(III)如圖,直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G.由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點P在點G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學生綜合運用所學知識.22、(1)見解析(2)6【解析】

(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論