版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.2.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.已知定義在上的函數(shù),,,,則,,的大小關系為()A. B. C. D.4.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.5.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.6.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.3607.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.8.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,29.若,則()A. B. C. D.10.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.11.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.12.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是103二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在定義域R上的導函數(shù)為,若函數(shù)沒有零點,且,當在上與在R上的單調性相同時,則實數(shù)k的取值范圍是______.14.設,滿足約束條件,若的最大值是10,則________.15.命題“”的否定是______.16.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.18.(12分)表示,中的最大值,如,己知函數(shù),.(1)設,求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.20.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.21.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.22.(10分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數(shù)方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數(shù)性質的應用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學生數(shù)形結合、數(shù)學運算的能力,是一道中檔題.2.C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.3.D【解析】
先判斷函數(shù)在時的單調性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調性是解題的關鍵.4.C【解析】
利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.5.B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.6.A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.7.A【解析】
根據(jù)奇偶性定義和性質可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數(shù),圖象關于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數(shù)單調性將函數(shù)值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.8.C【解析】
先求出集合U,再根據(jù)補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.9.D【解析】
直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,同角三角函數(shù)關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.10.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.11.D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.12.D【解析】
計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可知:為上的單調函數(shù),則為定值,由指數(shù)函數(shù)的性質可知為上的增函數(shù),則在,單調遞增,求導,則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調函數(shù),都有,則為定值,設,則,易知為上的增函數(shù),,,又與的單調性相同,在上單調遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:【點睛】本題考查導數(shù)的綜合應用,考查利用導數(shù)求函數(shù)的單調性,正弦函數(shù)的性質,輔助角公式,考查計算能力,屬于中檔題.14.【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉化為與直線平行,數(shù)形結合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎題.15.,【解析】
根據(jù)特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.16.(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數(shù)學抽象的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)直接利用轉換公式,把參數(shù)方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數(shù)求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數(shù)方程與極坐標方程的互化,三角函數(shù)的值域求解等知識,考查了學生的運算求解能力.18.(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數(shù),使得對恒成立,且的取值范圍為................................................11分考點:導數(shù)應用.【思路點睛】本題考查了函數(shù)恒成立問題;利用導數(shù)來判斷函數(shù)的單調性,進一步求最值;屬于難題.本題考查函數(shù)導數(shù)與單調性.確定零點的個數(shù)問題:可利用數(shù)形結合的辦法判斷交點個數(shù),如果函數(shù)較為復雜,可結合導數(shù)知識確定極值點和單調區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數(shù)的值域問題處理.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數(shù)最值處理.也可構造新函數(shù)然后利用導數(shù)來求解.注意利用數(shù)形結合的數(shù)學思想方法.19.(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結論;(2)根據(jù)已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學運算的數(shù)學核心素養(yǎng),屬于中檔題.20.(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調區(qū)間.(2)令求得,構造函數(shù),利用導數(shù)求得的單調區(qū)間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度零食店收銀員顧客節(jié)日促銷活動聘用合同4篇
- 2025年物業(yè)服務與社區(qū)文化活動合作協(xié)議書6篇
- 二零二五年精密儀器動產(chǎn)買賣技術支持合同3篇
- 二零二五年度芒果種植基地與金融投資機構合作合同2篇
- 2025-2030年中國輪胎硫化機行業(yè)市場運營現(xiàn)狀及投資前景規(guī)劃研究報告
- 2025-2030年中國蜂蠟行業(yè)前景趨勢展望及投資潛力分析報告
- 2025-2030年中國花肥行業(yè)運行狀況及發(fā)展趨勢預測報告新版
- 2025-2030年中國船舶租賃產(chǎn)業(yè)市場十三五規(guī)劃及投資戰(zhàn)略研究報告
- 2025-2030年中國自動滅火系統(tǒng)行業(yè)市場運營狀況及發(fā)展戰(zhàn)略研究報告
- 2025-2030年中國紅葡萄酒行業(yè)市場發(fā)展狀況及營銷戰(zhàn)略研究報告
- 軟件項目應急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學年人教版數(shù)學六年級上冊 期末綜合卷(含答案)
- 鈑金設備操作培訓
- 感染性腹瀉的護理查房
- 中考英語688高頻詞大綱詞頻表
- 九年級初三中考物理綜合復習測試卷3套(含答案)
- 管理制度評價表(填寫模板)
- 工地設計代表服務記錄
評論
0/150
提交評論