




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年重慶江津長壽巴縣等七校高三年級下學(xué)期期中考試數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,則()A.10 B.16 C.20 D.242.復(fù)數(shù)().A. B. C. D.3.若的內(nèi)角滿足,則的值為()A. B. C. D.4.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.5.設(shè)為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.6.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件7.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.8.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.9.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.10.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.11.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.12.在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.14.若函數(shù)的圖像上存在點,滿足約束條件,則實數(shù)的最大值為__________.15.若函數(shù)為偶函數(shù),則.16.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時,該圓的標準方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.18.(12分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點的直角坐標.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.20.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.22.(10分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.2.A【解析】試題分析:,故選A.【考點】復(fù)數(shù)運算【名師點睛】復(fù)數(shù)代數(shù)形式的四則運算的法則是進行復(fù)數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.3.A【解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.4.D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.5.D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D本小題主要考查函數(shù)值的計算,屬于基礎(chǔ)題.6.A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題7.D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.8.B【解析】
列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當(dāng),時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.9.B【解析】
畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內(nèi)的點到原點距離的最小值,此時,點到原點的距離是可行域內(nèi)的點到原點距離的最大值,此時.所以的取值范圍是.故選:B本小題考查線性規(guī)劃,兩點間距離公式等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識.10.D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.11.D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當(dāng)時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當(dāng)時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.12.C【解析】
根據(jù)直線與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.本題主要考查了直線與圓的位置關(guān)系,幾何概型,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè)點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.14.1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點B(2,1),當(dāng)直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數(shù)的最大或最小會在可行域的端點或邊界上取得.15.1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點:函數(shù)的奇偶性.【方法點晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?6.【解析】
由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設(shè)圓的圓心坐標,到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標,進而求出圓的標準方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時取等號,可得,所以圓心坐標為:,半徑為,所以圓的標準方程為:.故答案為:.本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意驗正等號成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設(shè),兩點對應(yīng)的極分別為,,則,,所以,又點到直線的距離所以本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.18.【解析】
將直線的極坐標方程和曲線的參數(shù)方程分別化為直角坐標方程,聯(lián)立直角坐標方程求出交點坐標,結(jié)合的取值范圍進行取舍即可.【詳解】因為直線的極坐標方程為,所以直線的普通方程為,又因為曲線的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標方程為,聯(lián)立方程,解得或,因為,所以舍去,故點的直角坐標為.本題考查極坐標方程、參數(shù)方程與直角坐標方程的互化;考查運算求解能力;熟練掌握極坐標方程、參數(shù)方程與直角坐標方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19.(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時,,此時不等式無解;當(dāng)時,,由得;當(dāng)時,,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時,;當(dāng)時,,所以當(dāng)時,,由得或,所以實數(shù)的取值范圍為.本題考查絕對值不等式的解法、不等式恒成立問題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.20.(1)平行,證明見解析;(2).【解析】
(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.21.(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據(jù)極坐標與直角坐標的轉(zhuǎn)化求解出直線的極坐標方程;(2)將的坐標設(shè)為,利用點到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時對應(yīng)的值.【詳解】(1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設(shè)的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當(dāng),時取得最小值即,∴本題考查直線的參數(shù)方程、普通方程、極坐標方程的互化以及根據(jù)曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年應(yīng)對紡織供應(yīng)鏈危機的方法試題及答案
- 2024年聚焦廣告設(shè)計師考試趨勢及發(fā)展試題及答案
- 口岸營商環(huán)境試題及答案
- 城管督察面試題目及答案
- 樹立品牌形象的廣告創(chuàng)意策略分析試題及答案
- 廣告設(shè)計師考試2024年品牌設(shè)計趨勢試題及答案
- 2024年廣告設(shè)計師目標群體分析試題及答案
- 廣告元素的功能與分析試題及答案
- 2024年廣告設(shè)計師項目策略試題及答案
- 2024年紡織品設(shè)計師知識回顧試題及答案
- 2024年安全員C證考試題庫附答案
- 2024年生態(tài)環(huán)境執(zhí)法大練兵比武競賽理論考試題庫-下(多選、判斷題)
- 醫(yī)院創(chuàng)建服務(wù)基層行創(chuàng)建資料(3.5.2醫(yī)院感染相關(guān)監(jiān)測C)
- 2024年山東省東營市中考道德與法治試卷真題(含答案)
- SQL語句創(chuàng)建學(xué)生信息數(shù)據(jù)庫表的示例學(xué)生信息數(shù)據(jù)庫表
- 河南省安陽市林州市2023-2024學(xué)年八年級下學(xué)期6月期末歷史試題(解析版)
- 遼寧省沈陽市2023-2024學(xué)年高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版)
- 四年級語文國測模擬試題 (1)附有答案
- 輸變電工程施工質(zhì)量驗收統(tǒng)一表式附件1:線路工程填寫示例
- 物業(yè)進場服務(wù)方案
- 鋰離子電池MSDS中英文版
評論
0/150
提交評論